APJ Abdul Kalam Technological University

Cluster 4: Kottayam

M. Tech Program in Electronics & Communication Engineering (Advanced Electronics & Communication)

Scheme of Instruction & Syllabus: 2015 Admissions

Compiled By Rajiv Gandhi Institute of Technology, Kottayam July 2015

APJ Abdul Kalam Technological University

(Kottayam Cluster)

M. Tech in Electronics and Communication Engineering

With specialization in Advanced Electronics and Communication Engineering

Scheme

Credit requirements: 65 credits (21+18+14+12)Normal Duration: Regular: 4 semesters; External Registration: 6 semesters;Maximum duration: Regular: 6 semesters; External Registration: 7 semesters.Courses: Core Courses: Either 4 or 3 credit courses; Elective courses: All of 3 creditsELIGIBILITY: B. Tech / B.E in Electronics and Communication engineering, or allied branches with strong
focus in electronics engineering.

Allotment of credits and examination scheme:-

Semester 1

Exam Slot	Course No:	Name	L- T - P	Internal Marks	End Semester Exam		Credits
					Marks	Dura tion (hrs)	
A	04 EC 6101	Linear Algebra for Communication Engg	4-0-0	40	60	4	4
В	04 EC 6103	Probability and Random Processes	3-0-0	40	60	3	3
C	04 EC 6201	Design of CMOS VLSI Circuits	3-0-0	40	60	3	3
D	04 EC 6203	DSP Algorithms and Architectures	3-0-0	40	60	3	3
E	04 EC 6XXX	Elective - I	3-0-0	40	60	3	3
	04 GN 6001	Research Methodology	0-2-0	100	0	0	2
	04 EC 6291	Seminar - I	0-0-2	100	0	0	2
	04 EC 6293	DSP Systems Lab	0-0-2	100	0	0	1
		Total	22				21

*See List of Electives-I for slot E

List of Elective - I Courses

Exam	Course No.	Course Name
Slot		
E	04 EC 6205	Detection and Estimation Techniques
E	04 EC 6207	Synthesis of Digital Systems
E	04 EC 6209	FPGA Based System Design
E	04 EC 6113	Image & Video Processing

2 APJ Abdul Kalam Technological University | Cluster 4 | M. Tech Program in Advanced Electronics & Communication Engineering

Semester 2 (Credits: 18)

Exam Slot	Course No:	Name	L- T - P	Internal Marks	End Semester Exam		Credits
					Marks	Dura tion (hrs)	
A	04 EC 6202	Multirate Signal Processing and Wavelets	3-0-0	40	60	3	3
В	04 EC 6204	Mixed Signal Circuit Design	3-0-0	40	60	3	3
C	04 EC 6206	System Design Using ARM	3-0-0	40	60	3	3
D	04 EC 6XXX	Elective - II	3-0-0	40	60	3	3
E	04 EC 6XXX	Elective - III	3-0-0	40	60	3	3
	04 EC 6292	Mini Project	0-0-4	100	0	0	2
	04 EC 6294	FPGA Design Lab	0-0-2	100	0	0	1
		Total	22				18

*See List of Electives -II for slot D

^See List of Electives -III for slot E

List of Elective - II Courses

Exam	Course	Course Name	
Slot	Code		
D	04 EC6108	Multicarrier Communication Systems	
D	04 EC6114	Speech Technology	
D	04 EC6208	VLSI Signal Processing	
D	04 EC6212	Mobile Computing	

List of Elective - III Courses

Exam	Course	Course Name
Slot	Code	
E	04 EC 6116	MIMO Communication Systems
E	04 EC 6214	Nano Electronics
E	04 EC 6122	Optimization Techniques
E	04 EC 6216	Optical Networks and Systems

Summer Break

Exam Slot	Course No:	Name	L- T - P	Internal Marks	End Semester Exam		Credits
					Marks	Dura tion (hrs)	
NA	04 EC 7290	Industrial Training	0-0-4	NA	NA	NA	Pass /Fail
		Total	4				0

3 APJ Abdul Kalam Technological University | Cluster 4 | M. Tech Program in Advanced Electronics & Communication Engineering

Semester 3 (Credits: 14)

Exam Slot	Course No:	Name	L- T - P	Internal Marks	End Semester Exam		Credits
					Marks	Dura tion (hrs)	
Α	04 EC 7XXX	Elective - IV	3-0-0	40	60	3	3
В	04 EC 7XXX	Elective - V	3-0-0	40	60	3	3
	04 EC 7291	Seminar - II	0-0-2	100	0	0	2
	04 EC 7293	Project (Phase - I)	0-0-12	50	0	0	6
		Total	20				14

*See List of Electives-IV for slot A

^See List of Electives-V for slot B

List of Elective - IV Courses

Exam Slot	Course Code	Course Name
A	04 EC 7201	Design of ASIC
A	04 EC 7203	VLSI Structures for DSP
A	04 EC 7205	Advanced Digital System Design Techniques
А	04 EC 7207	Pattern Recognition

List of Elective - V Courses

Exam Slot	Course Code	Course Name
В	04 EC 7209	VLSI Subsystem Design
В	04 EC 7211	Testing of VLSI Circuits
В	04 EC 7213	Advanced Digital Communication
В	04 EC 7113	Recent Trends in Communication Engineering

Semester 4 (Credits: 12)

Exam Slot	Course No:	Name	L- T - P	Internal Marks	External Evaluation Marks		Credits
NA	04 EC 7294	Project (Phase -II)	0-0-21	70	30	NA	12
		Total	21				12

Total: 65

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6101	LINEAR ALGEBRA FOR COMMUNICATION ENGG	4 -0-0: 4	2015

Course Objectives:

- To gain an understanding of the linear system of equations
- To get introduce d to the fundamentals of vector spaces
- To impart the basics of linear transformation , inner product spaces and ,orthogonalization
- To provide the knowledge to apply linear algebra in communication engineering

Syllabus

Introduction to linear system, matrices, vector spaces, Triangular factors and row exchanges (LU), Linear Transformation, Orthogonality, Hilbert spaces, orthogonal complements, projection theorem, orthogonal projections, Eigen values, eigen vectors, diagonalization, symmetric matrices, Least-square solution of inconsistent system, singular value decomposition, selected topics in communication Engg.

Course Outcome:

Students who successfully complete this course would have the ability to solve the problems related to linear systems and matrices- Apply the knowledge of linear transformation, orthogonal projections and orthonormalization to engineering applications-to obtain the Least-square solution of inconsistent system -to apply singular value decomposition in typical applications.

Text Books:

- 1. K. Hoffman, R. Kunz, "Linear Algebra", Prentice Hall India
- 2. G. Strang, "Linear algebra and its applications", Thomson Publishers.

References:

- 1. D. C. Lay, "Linear algebra and its applications", Pearson Education
- 2. Gareth Williams, "Linear algebra with applications", Narosa
- 3. Michael W. Frazier, "An Introduction to wavelets through linear algebra", Springer

5 APJ Abdul Kalam Technological University/Cluster 4 /M. Tech Program in Advanced Electronics & Communication Engineering

COURSE PLAN

COURSE CODE:	COURSE TITLE	CREDITS				
04 EC 6101	LINEAR ALGEBRA FOR COMMUNICATION ENGG	4-0-	0:4			
	MODULES					
MODULE 1: Mati elimination, matr matrices, inverse	MODULE 1: Matrices: Introduction to linear system, matrices, vectors.Gaussian elimination, matrix notation, partitioned matrices, multiplication of partitioned matrices, inverse of partitioned matrices					
MODULE 2:Trian permutation mate	gular factors and row exchanges (LU)Row exchanges and rices, inverses (Gauss-Jordan method)	6	15			
	INTERNAL TEST 1 (MODULE 1 & 2)					
MODULE 3:Vecto Spanning set the dimension of null co-ordinate system	r space, subspace, linear independence, span, basis, dimension. orem, null space, column space, row space-(Matrix) Basis and space, column space, row space-(Matrix)Rank nullity theorem, m, change of basis–(finite space)	10	15			
MODULE 4:Linea matrix represent spaces: Inner pr inequality, self ad	MODULE 4:Linear transformation, Kernel and range of linear transformation, matrix representation of linear transform, inverse transform, Inner product spaces: Inner product space, norm, Cauchy-Schwarz inequality, Triangular inequality, self adjoint and normal operators		15			
	INTERNAL TEST 2 (MODULE 3 & 4)					
MODULE 5:Ortho theorem, orthogo Orthonormal basi	gonality, Hilbert spaces, orthogonal complements, projection nal projections s, Gram-Schmidt orthogonalization	8	20			
MODULE 6:Eigen Quadratic forms, inconsistent syste communication sy space representat	values, eigen vectors, diagonalization, symmetric matrices classification of quadratic forms. Least-square solution of em, singular value decomposition.Application of SVD in OFDM ystem. Application of Gram-Schmidt orthogonalization in signal cion of digital modulation schemes	14	20			
	END SEMESTER EXAM					

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6103	PROBABILITY AND RANDOM PROCESSES	3 -0-0: 3	2015

Course Objectives

- To introduce the fundamentals of probability theory and random processes
- To study limit theorems and stochastic processes
- To learn the important concepts of random processes and to apply it to communication systems

Syllabus

Introduction to Probability Theory - conditional probabilities, - Bayes' theorem.

Random variables - expectation of a random variable, moment generating function - probability distributions - random vectors - Limit theorems: - Stochastic process conditional probability distributions - Random Process - power spectral density, unit impulse response system, response of a LTI system to WSS input, noise in communication system-white Gaussian noise, filters- Selected Topics: Poisson process-Properties, Markov process and Markov chain, Chapman-Kolmogorov theorem - Birth-death process, Wiener process.

Course Outcome:

Students finishing this course will have the ability

- to model communication systems based on random process
- to understand limit theorems and stochastic processes
- to deal with probability and random processes

Text books

- 1. V. Sundarapandian, "Probability, statistics and Queueing theory", Prentice Hall of India
- 2. Athanasios Papoulis, S. UnnikrishnanPillai, "Probability, Random Variables and Stochastic Processes", Tata McGraw Hill

- 1. T. Veerarajan, "Probability, Statistics and random processes", McGraw-Hill
- S. M. Ross, "Stochastic Process", John Wiley and sons Henry Stark, John W. Woods, "Probability and random processes with application to signal processing", Pearson Education.
 - 7 APJ Abdul Kalam Technological University/Cluster 4 /M. Tech Program in Advanced Electronics & Communication Engineering

COURSE CODE:	OURSE CODE: COURSE TITLE				
04 EC 6103	Probability And Random Processes	3-0-	0:3		
	MODULES				
MODULE 1: Introc conditional proba Bayes' theorem, distributions, expo	duction to Probability Theory Samplespace and events, abilities, independent events, the law of total probability and Random variables :Discrete and continuous random variables, ectation of a random variable	8	15		
MODULE 2: Mom probability distri inequalities, Wea central limit theor	ent generating function, joint probability distributions, marginal ibutions and random vectors, Markov and Chebyshev k and strong law of large numbers, convergence concepts and rem	6	15		
	INTERNAL TEST 1 (MODULE 1 & 2)				
MODULE 3: Stochastic process(definition), conditional probability distributions (continuous and discrete cases), computing mean andvariances by conditioning.			15		
MODULE 4: Random process - Classification of random process, special classes of random process, SSS and WSS, auto and cross–correlation, Ergodicity, Mean ergodic process, power spectral density			15		
	INTERNAL TEST 2 (MODULE 3 & 4)				
MODULE 5:Unit ir noise in communi	npulse response system, response of a LTI system to WSS input, cation system-white Gaussian noise, filters.	7	20		
MODULE 6:Poisson process-Properties, Markov process and Markov chain, Chapman-Kolmogorov theorem, classification of states of a Markov chain, Birth- death process, Wiener process.			20		
	END SEMESTER EXAM				

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6201	DESIGN OF CMOS VLSI CIRCUITS	3-0-0: 3	2015

Objectives

- To introduce the basics of logic design in CMOS technology.
- To introduce to the physical design of Integrated Circuits.
- To introduce to VLSI Testing.

Syllabus

MOSFETs-characteristics - MOS Capacitances - MOS RC Model.Analysis of CMOS logic gates-BiCMOS Circuits - Scaling of MOS circuits-VLSI Circuit Design Processes - CMOS Design rules-Gate Level Design - driving large capacitive load -logical effort –optimizing the number of stages.BiCMOS drivers.Wiring capacitance,interconnect delays.Static & Dynamic CMOS design.-CMOS Testing

Course Outcome:

Students finishing this course will have the ability

- to understandMOSFETcharacteristics and MOS Capacitances
- to analyse CMOS logic gates
- to design for large capacitive loads

Text books

- 1. N. H. E. Weste, K. Eshraghian, "Principles of CMOS VLSI Design", Pearson 1999.
- 2. K. Eshraghian, D. A. Pucknell, "Essentials of VLSI Circuits and Systems", PHI, 2005.

References:

- 1. J. P. Uyemura, "Introduction to VLSI Circuits and Systems", Wiley India Edition, 2002.
- 2. J. M. Rabaey, A. Chandrakasan, B. Nikolic, "Digital Integrated Circuits", 2/e, PHI EEE..
- 3. R. Jacob Baker, "CMOS Circuit Design Layout and Simulation" Wiley India Edition.

9 APJ Abdul Kalam Technological University/Cluster 4 /M. Tech Program in Advanced Electronics & Communication Engineering

COURSE CODE:	OURSE CODE: COURSE TITLE CR		
04 EC 6201	Design Of CMOS VLSI Circuits	3-0-	D:3
	MODULES	Contact Hours	Sem. Exam Marks (%)
MODULE 1: Electronic Stress Nonideal I-V effect	ctrical characteristics of MOSFETs: MOS physics, threshold voltage equations, Body bias effects, Nonideal I-V effects, cts. MOS Capacitances, MOS RC Model.	8	15
MODULE 2: An characteristics, Po of complex logic g BiCMOS Circuits.	alysis of CMOS logic gates: Switching characteristics, DC ower dissipation of CMOS Inverter, NAND & NOR gates, Analysis gates – gate design for transient response Analysis and Design of Scaling of MOS circuits, limitations of scaling.	6	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
MODULE 3: VLSI diagrams, design for wires, Conta inverters and gate	design flow, Elements of Physical design -MOS layers, stick rules and layout, Layout for basic structures, CMOS Design rules cts and transistors, layout diagrams for NMOS and CMOS es.	7	15
MODULE 4:Basic circuit concepts, sheet resistance and its concept to MOS, area capacitance.Gate delays - driving large capacitive load, Delay minimization in an inverter cascade.			15
	INTERNAL TEST 2 (MODULE 3 & 4)		
MODULE 5:Logica BiCMOS drivers. CMOS design.	l effort – basic definitions, optimizing the number of stages Wiring capacitance, interconnect delays. Static & Dynamic	7	20
MODULE 6: CMO test.Chip level te improved testab Application of Gra digital modulation	S testing - Need for testing, test principles, design strategies for st techniques, system level test techniques, layout design for ilityApplication of SVD in OFDM communication system. am-Schmidt orthogonalization in signal space representation of n schemes.	7	20
END SEMESTER EXAM			

10 APJ Abdul Kalam Technological University/Cluster 4 /M. Tech Program in Advanced Electronics & Communication Engineering

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6203	DSP ALGORITHMS AND ARCHITECTURES	3 -0-0: 3	2015

Course Objectives:

To give the Student:-

- To provide students with a sound understanding of existing Digital Signal Processors
- To develop an understanding of the need for parallelism.
- To introduce different number systems in computer arithmetic
- To develop the basic tools with which students can later learn about newly developed processors and its various applications.

Syllabus

Introduction to DSP processors, Pipeline and introduction to memory, Instruction Level Parallelism (ILP), Computer arithmetic, Case studies, Implementation using MATLAB

Course Outcome:

Students who successfully complete this course will have demonstrated an ability to understand the fundamental concepts DSP Processors; Apply the basic concepts of pipelining, parallelism and computer arithmetic and implementation using MATLAB

Text books

1. J. L. Hennesy, D.A. Patterson, "Computer Architecture A Quantitative Approach", 3/e, Elsevier India

- 1 RulphChassaing, "Digital Signal Processing and Applications with the C6713 and C6416 DSK", Wiley, 2005
- 2 Nasser Kehtarnavaz, "Real Time Signal Processing Based on TMS320C6000", Elsevier, 2004
- 3 Uwe Mayer-Baese, "Digital Signal Processing with FPGAs", Springer, 2001
- 4 User's manual for of various fixed and floating point DSPs, TMS320C6x Data Sheets from TI. Blackfin Processor Hardware Reference, Analog Devices, Version 3.0, 2004

COURSE CODE:	COURSE TITLE	CRED	DITS		
04 EC 6203	DSP Algorithms And Architectures	3-0-	0:3		
	MODULES				
MODULE 1: Nee Architecture, Arc processorsReview performance and	d for special DSP processors, von Neumann versus Harvard hitectures of superscalar and VLIW fixed and floating point of pipelined RISC, architecture and instruction set design, benchmarks-SPEC CPU 2000	7	15		
MODULE 2: EEM pipeline hazards (design, cache per	BC DSP benchmarks, basic pipeline: implementation details- based on MIPS 4000 arch). review of memory hierarchy – cache formance issues & improving techniques	7	15		
	INTERNAL TEST 1 (MODULE 1 & 2)				
MODULE 3: Con hardware predict speculation, limita	cepts, dynamic scheduling - reducing data hazards, dynamic ion - reducing branch hazards, multiple issue- hardware-based ations of ILP	7	15		
MODULE 4:Computer arithmetic: Signed digit numbers (SD), multiplier adder graph, Logarithmic and Residue Number system (LNS, RNS), index multiplier, pipelined adders, modulo adders, Distributed Arithmetic (DA) - CORDIC Algorithm.		9	15		
	INTERNAL TEST 2 (MODULE 3 & 4)				
MODULE 5: Case processor (Anal- Applications: FIR MATLAB	e studies: Introduction to architecture Details of (a) BlackFin og Devices) (b) TMS320C64X Digital Signal Processing and IIR Digital Filter Design, Filter Design Programs using	6	20		
MODULE 6: Fourier Transform: DFT, FFT programs using MATLAB - Real Time Implementation on DSP processors- Factors to be considered for optimized implementation based on processor architecture: Implementation of simple Real Time Digital Filters, FFT using DSP [Only familiarity with instruction set is expected. It is not required to memorize all the instructions.].			20		
	END SEMESTER EXAM				

ELECTIVE-1

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6205	DETECTION AND ESTIMATION TECHNIQUES	3-0-0: 3	2015

Pre-requisites: Nil

Course Objectives:

- To impart the fundamentals of estimation and detection theory;
- To learn various types of estimators and their performance bounds;
- To introduce the various decision rules in detection theory;

Syllabus

Estimation theory and it's mathematical formulation; Linear models and least Squares; Extension to vector parameter and application examples; Detection theory and it's mathematical formulation; Detection of deterministic and random signals in noise; Bayesian approach in detection.

Course Outcome:

Students who successfully complete this course will understand the fundamentals of estimation and detection theory. This helps the students to mathematically model the communication systems. Also, the knowledge of various types of estimators and decision rules obtained from the course enables them to design and implement better communication receivers.

Text Books:

- 1. Steven Kay, "Fundamentals of Statistical Signal Processing" Vol I: Estimation Theory, Prentice Hall.
- 2. Steven Kay, "Fundamentals of Statistical Signal Processing" Vol II: Detection Theory, Prentice Hall.

References:

 H. L. Van Trees, "Detection, Estimation, and Modulation Theory", Vol. I, John Wiley & Sons, 1968
Statistical Digital Signal Processing and Modelling" by Monson H. Hayes, John Wiley & Sons Publications, 2002.

COURSE CODE:	COURSE TITLE	CREDITS		
04 EC 6205	Detection and Estimation Techniques	3-0-0	:3	
	MODULES		Sem. Exam Marks (%)	
MODULE : 1	L Estimation Theory-Mathematical formulation of	7	15	
Parameter	Estimation, Minimum Variance Unbiased			
Estimation(MVUE), Cramer-Rao Lower Bound (CRLB), CRLB			
for signals i	n White Gaussian Noise, extension to vector			
parameter,	application examples.			
MODULE : 2	2-Best Linear Unbiased Estimation (BLUE),	7	15	
Maximum li	ikelihood estimation (MLE), extension to vector			
parameter,	application examples.			
	INTERNAL TEST 1 (MODULE 1 & 2)			
MODULE : 3	3 -Least Squares, Method of Moments, Bayesian	7	15	
estimators,	extension to vector parameter, application			
examples.				
MODULE : 4	1 Detection Theory-Mathematical formulation,	7	15	
Hypothesis	Testing, Neyman Pearson Theorem, Bayes			
criterion, m	inimum probability of error criterion, likelihood			
ratio test, a	pplication examples.			
	INTERNAL TEST 2 (MODULE 3 & 4)			
MODULE : 5	5-Detection of deterministic and random signals in	7	20	
noise, Com	posite Hypothesis Testing, generalized likelihood			
ratio test, a	pplication examples.			
MODULE : 6	5-Bayesian approach in detection, detection of	7	20	
determinist				
application	examples.			
	END SEMESTER EXAM			

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6207	SYNTHESIS OF DIGITAL SYSTEMS	3 -0-0:3	2015

Course Objectives:

To give the Student:-

- To impart a thorough knowledge about the need for logic level minimizations
- To provide basic knowledge about FSM network and its minimization
- To study and design algorithmic state machines

Syllabus

Two Level Minimization , Multi Level Minimization, Multi-Level Logic Synthesis, Sequential Logic Synthesis, Synthesis at the Register Transfer Level, Implementation of digital systems.

Course Outcome:

Students who successfully complete this course will have demonstrated an ability to understand the fundamental concepts minimizing Boolean expressions using two level and multi level techniques; To provide an insight into synthesis process and implementation

Text books

1. Giovanni de Micheli, "Synthesis and Optimization of Digital Systems", McGraw Hill, 1994.

- 1 S. Hassoun, T. Sasao, and R. K. Brayton, "Logic Synthesis and Verification", Kluwer Academic Publishers, 2001.
- 2 G. D. Hachtel and F. Somenzi, "Logic Synthesis and Verification Algorithms", Kluwer Academic Publishers, 1996.

COURSE CODE:	COURSE CODE: COURSE TITLE		ITS
04 EC 6207	Synthesis Of Digital Systems	3-0-	0:3
	Contact Hours	Sem. Exam Marks (%)	
MODULE 1: Two Level Minimization Introduction- logic functions and their representation, Unate functions/recursive paradigm,Quine-McCluskey, ESPRESSO two level minimization			15
MODULE 2:Multi factored forms) d	valued Minimization BDDs-Introduction (Boolean networks, ivision, simplification, full simplify SPFDs	7	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
MODULE 3:Multi-Level Logic Synthesis-Technology mapping, timing optimization application to special logic implemntation styles.			15
MODULE 4:Sequential Logic Synthesis-Introduction (FSM networks), node minimization, state minimization, retiming and resynthesis verification, state assignment.			15
	INTERNAL TEST 2 (MODULE 3 & 4)		
MODULE 5:Synthesis at the Register Transfer Level-Register transfer level notation, Algorithmic state machine design (ASMD), design example- ASMD chart.			20
MODULE 6:Imple multiplier using a	MODULE 6:Implementation-Sequential binary multiplier, Control Logic for binary multiplier using a sequence register and decoder, design with multiplexers.		
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6209	FPGA BASED SYSTEM DESIGN	3 -0-0: 3	2015

Course Objectives:

To give the Student:-

- To learn the various programmable devices and their architecture
- To learn its technology mapping and routing

Syllabus

Evolution of Programmable Devices ,FPGA Technology, FPGA and Design Process, Technology Mapping for FPGAs, Mapping for FPGAs, Routing of FPGAs

Course Outcome:

Apply the basics of programmable devices, FPGA technology and design process. Students who successfully complete this course will get an idea of mapping and routing FPGAs;

Text books

1. Stephen D. Brown, Robert J. Francis, Jonathan Rose and Zvonko G. Vranesic, "Field-Programmable Gate Arrays"

- 1. Wayne Wolf, "FPGA-Based System Design", Verlag: Prentice Hall
- 2. Wayne Wolf, "Modern VLSI Design: System-on-Chip Design", 3/e, Verlag

COURSE CODE:	E: COURSE TITLE		DITS
04 EC 6209	FPGA Based System Design	3-0-	0:3
	MODULES	Contact Hours	Sem. Exam Marks (%)
MODULE 1: Evolu structured Progra Combinational a Programmable Lo devices.	tion of Programmable Devices -Introduction to AND-OR mmable Logic Devices, PROM, PLA, PAL and MPGAs, and sequential circuit realization using PROM based gic Element (PLE), architecture of FPAD, FPLA, FPLS and FPID	8	15
MODULE 2: FPGA Technology Economics and Programming Tec EPROM and EEPR	-FPGA resources - Logic Blocks and Interconnection Resources, applications of FPGAs, Implementation Process for FPGAs hnologies, Static RAM Programming, Anti Fuse Programming, OM Programming Technology	7	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
MODULE 3:FPGA and Design Process-commercially available FPGAs - Xilinx FPGAs, Altera FPGAs, FPGA. Design Flow Example - Initial Design Entry, Translation to XNF Format, Partitioning, Place and Route, Performance Calculation and Design Verification.			15
MODULE 4:Technology Mapping for FPGAs-Logic Synthesis - Logic Optimization and Technology Mapping, Lookup Table Technology Mapping - Chortle-crf Technology Mapper, Chortle-d Technology Mapper, Lookup Table Technology Mapping in mis-pga			15
	INTERNAL TEST 2 (MODULE 3 & 4)		
MODULE 5:Mapp Hydra Technolog Technology Mapp Design Flow E Partitioning, Place	ing for FPGAs-Lookup Table Technology Mapping in Asyl and y Mapper; Multiplexer Technology Mapping - Multiplexer ing in mis-pga. xample - Initial Design Entry, Translation to XNF Format, e and Route, Performance Calculation and Design Verification.	7	20
MODULE 6:Routi FPGAs; Routing f Functionality ver Procedure,Logic E routing, 1-channe	ng for FPGAs-Routing Terminology; Strategy for routing in or Row- Based FPGAs. Logic Block Architecture: Logic Block rsus Area-Efficiency - Logic Block Selection, Experimental lock Area and Routing Model and Results Segmented channel I routing algorithm, K – channel routing algorithm and results.	7	20

18 APJ Abdul Kalam Technological University/Cluster 4 /M. Tech Program in Advanced Electronics & Communication Engineering

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6113	IMAGE AND VIDEO PROCESSING	3 -0-0: 3	2015

Objectives:

- To introduce the fundamental concepts of digital image processing and applications
- To familiarize the various techniques in image enhancement
- To impart the fundamentals in boundary description and video processing

Syllabus

Introduction to Digital Image Processing & Applications - image models - transforms - basis images, Image Enhancement operations - image restoration - degradation models -image segmentation-Boundary Representation-Object recognition - Morphological image processing - Video Processing -Time Varying Image Formation Models -Spatio-temporal sampling, 2D and 3D motion estimation- Image Compression- Video Compression-Interframe Compression Methods.

Course Outcome:

Students finishing this course will have the ability

- to understand the fundamental concepts of digital image processing and applications
- to analyse and perform image enhancement and segmentation problems
- to performImage Compression techniques

Text books

- 1. R. C. Gonzalez, R. E. Woods, "Digital Image Processing", Pearson Education.
- 2. M. Tekalp, "Digital Video Processing", Prentice-Hall.

- 1. K. Jain, "Fundamentals Of Digital Image Processing", Prentice Hall Of India, 1989.
- 2. Bovik, "Handbook of Image & Video Processing", Academic Press, 2000
- 3. W. K. Pratt, "Digital Image Processing", Prentice Hall
- 4. Rosenfeld, A. C. Kak, "Digital Image Processing", vols. 1 and 2, Prentice Hall.
 - 19 APJ Abdul Kalam Technological University/Cluster 4 | M. Tech Program in Advanced Electronics & Communication Engineering

COURSE CODE:	COURSE TITLE	CRED	DITS	
04 EC 6113	Image And Video Processing	3-0-	0:3	
	MODULES			
MODULE 1: Introd visual perception between pixels, co	duction to Digital Image Processing & Applications - Elements of , Mach band effect, sampling, quantization, basic relationship plor image fundamentals-RGB-HSI models	8	15	
MODULE 2:Image transforms - two dimensional orthogonal and unitary transforms, separable unitary transforms, basis images, DFT, WHT, KLT, DCT and SVD			15	
	INTERNAL TEST 1 (MODULE 1 & 2)			
MODULE 3:Imag Transform oper degradation mode	6	15		
MODULE 4:Wiener filtering,Image segmentation: bi-level thresholding, multilevel thresholding, adaptive thresholding, region growing, splitting and merging, edge detection and linking, Hough transform.			15	
INTERNAL TEST 2 (MODULE 3 & 4)				
MODULE 5:Boundary Representation- Chain codes, polygonal approximation, boundary segments, boundary descriptors, regional descriptors, relational descriptors, Object recognition, pattern and pattern classes Recognition based on decision theoretic methods, matching, optimum statistical classifiers. Morphological image processing, erosion and dilation, opening or closing, HIT or MISS transformation, basic morphological algorithms.			20	
MODULE 6:Video temporal samplir methods, 3D mot Flow and Direct m Image Compressio Quantization, Su Methods.	8	20		
END SEMESTER EXAM				

20 APJ Abdul Kalam Technological University/Cluster 4 | M. Tech Program in Advanced Electronics & Communication Engineering

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 GN 6001	RESEARCH METHODOLOGY	0-2-0: 2	2015

Objectives:

- To get introduced to research philosophy and processes in general.
- To formulate the research problem and prepare research plan.
- To apply various numerical /quantitative techniques for data analysis
- To communicate the research findings effectively

Syllabus

Introduction to the Concepts of Research Methodology, Research Proposals, Research Design, Data Collection and Analysis, Quantitative Techniques and Mathematical Modeling, Report Writing

Course Outcome:

Students who successfully complete this course would learn the fundamental concepts of Research Methodology, apply the basic aspects of the Research methodology to formulate a research problem and its plan. They would also be able to deploy numerical/.quantiative techniques for data analysis. They would be equipped with good technical writing and presentation skills.

Text books

- 1. Research Methodology: 'Methods and Techniques', by Dr. C. R. Kothari, New AgeInternational Publisher,2004
- 2. Research Methodology: A Step by Step Guide for Beginners' by Ranjit Kumar, SAGE PublicationsLtd; Third Edition

Reference Books:

1. Research Methodology: An Introduction for Science & Engineering Students', by Stuart Melville and Wayne Goddard, Juta and Company Ltd, 2004

2. Research Methodology: An Introduction' by Wayne Goddard and Stuart Melville, Juta and Company Ltd, 2004

- 3. Research Methodology, G.C. Ramamurthy, Dream Tech Press, New Delhi
- 4. Management Research Methodology' by K. N. Krishnaswamy et al, Person Education.
 - 21 APJ Abdul Kalam Technological University/Cluster 4 |M. Tech Program in Advanced Electronics & Communication Engineering

COURSE CODE:	COURSE CODE: COURSE TITLE			
04 GN 6001	Research Methodology	0-2-	0:2	
	Contact Hours	Sem. Exam Marks (%)		
MODULE 1:Intr Meaning and Obj of research: Desc Qualitative, and C	5	15		
MODULE 2: Cri problem, Techniq Types, contents, E	MODULE 2: Criteria of Good Research, Research Problem, Selection of a problem, Techniques involved in definition of a problem, Research Proposals – Types, contents, Ethical aspects, IPR issues like patenting, copyrights.			
	INTERNAL TEST 1 (MODULE 1 & 2)			
MODULE 3: Meaning, Need and Types of research design, Literature Survey and Review, Identifying gap areas from literature review, Research Design Process, Sampling fundamentals, Measurement and scaling techniques, Data Collection – concept, types and methods, Design of Experiments.			15	
MODULE 4: Probability distributions, Fundamentals of Statistical analysis, Data Analysis with Statistical Packages, Multivariate methods, Concepts of correlation and regression, Fundamentals of time series analysis and spectral analysis			15	
INTERNAL TEST 2 (MODULE 3 & 4)				
MODULE 5: Principles of Thesis Writing, Guidelines for writing reports & papers, Methods of giving references and appendices, Reproduction of published material, Plagiarism, Citation and acknowledgement,			20	
MODULE 6 : Documentation and presentation tools – LATEX, Office Software with basic presentations skills, Use of Internet and advanced search techniques			20	
END SEMESTER EXAM				

22 APJ Abdul Kalam Technological University/Cluster 4 /M. Tech Program in Advanced Electronics & Communication Engineering

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6291	SEMINAR I	0 -0-2: 2	2015

Objective:

Each student shall present a seminar on any topic of interest related to the core/elective courses offered in the 1st semester of the M Tech Programme. He / She shall select the topic based on the references from international journals of repute, preferably IEEE journals. They should get the paper approved by the Programme Co-ordinator / Faculty member in charge of the seminar and shall present it in the class. Every student shall participate in the seminar. The students should undertake a detailed study on the topic and submit a report at the end of the semester. Marks will be awarded based on the topic, presentation, participation in the seminar and the report submitted.

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6293	DSP SYSTEMS LAB	0 -0-2: 1	2015

AIM:

To introduce the basic concepts of TMS 320C67XX DSP Kit and to give an exposure to Digital coding schemes.

OBJECTIVE:

- To familiarize the basic communication experiments using CCS and DSP Kit.
- Experiments for familiarizing basic probability functions.
- To analyse the Parameter estimators.
- To familiarize Different Digital Coding Schemes.

(Experiments are to be conducted using DSP kit)

- 1. Solution of Difference Equations
- 2. Impulse Response of IIR Filter
- 3. Linear Convolution
- 4. Circular Convolution
- 5. FIR Filter using Windowing
- 6. Pseudo-Random Binary Sequence Generation(Scrambling and Descrambling)
- 7. Effect of Aliasing
- 8. IIR Filter
- 9. Fast Fourier Transform
- 10. Noise Cancellation using Adaptive Filters
- 11. Spectrogram
- 12. Power Density Spectrum

Text books

 RulphChassaing, "Digital Signal Processing and Applications with the C6713 and C6416 DSK", Wiley – Interscience, 2005.

- 1. Steven A. Tretter, "Communication System Design Using DSP Algorithms with laboratory experiments for the TMS320C6713 DSK", Springer, 2008.
 - 24 APJ Abdul Kalam Technological University/Cluster 4 |M. Tech Program in Advanced Electronics & Communication Engineering

SEMESTER II

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6202	MULTIRATE SIGNAL PROCESSING AND WAVELETS	3 -0-0: 3	2015

Pre-requisites: Digital Signal Processing

Course Objectives:

- To impart the fundamental concepts of multirate Digital Signal Processing
- To introduce the various types of filter banks
- To explore the applications of multirate systems in communication
- To impart the basic concepts in STFT, wavelets and its application in communication

Syllabus

Fundamentals of Multirate Digital Signal Processing, Basic sampling rate alteration devices, Multirate identities, Filter banks, QMF filter banks Cosine modulated filter banks, Tree structured filter banks, Applications of multi-rate systems in communication , Short time Fourier Transform and Wavelets, Discrete Wavelet transform, Multi-resolution formulation of Wavelet systems and Wavelet applications, Filter banks and the DWT, Wavelet packets, Application of wavelet theory in communication systems.

Course Outcome:

Students who successfully completed this course would have gained an insight into to the sampling rate alteration devices and the various types of filter banks. They would be also be able to apply the multi-rate theory in to typical engineering problems. They would be equipped with the knowledge of wavelet transform and its implementation using filter-banks, which would enable them to apply it in typical applications in communication engineering

Text books:

1. P P. Vaidyanathan, "Multirate Systems and Filter Banks", Pearson Education

References:

1. R E Crochiere, L E Rabiner, "Multirate Digital Signal Processing", Prentice Hall.. N J Fliege, "MultirateDigital Signal Processing", Wiley Inter Science.

2. Frederic J Harris. "Multirate Signal Processing for communication systems", Pearson Education

3. S K Mitra,"Digital Signal Processing: A computer based approach", Tata-McGraw Hill

4. C S Burrus, R A Gopinath, H. Guo, "Introduction to Wavelets and Wavelet Transforms: A primer", Prentice Hall.

5. G Strang and T Q Nguyen, "Filter banks and Wavelets", Wellesly Cambridge press

6.K.P.Soman,N.G. Reshmi, K.I. Ramachandran , "Insight into wavelets: Theory and practice" :Prentice Hall

25 APJ Abdul Kalam Technological University/Cluster 4 |M. Tech Program in Advanced Electronics & Communication Engineering

COURSE CODE:	COURSE CODE: COURSE TITLE		CREDITS	
04 EC 6202	Multirate Signal Processing And Wavelets	3-0-0:3		
	MODULES	Contact Hours	Sem. Exam Marks (%)	
MODULE 1:Fundamentals of Multirate Digital Signal Processing : Basic sampling rate alteration devices-Sampling rate reduction by an integer factor: Down sampler - Time and frequency domain characterization of downsampler – Anti- aliasing filter and decimation system – Sampling rate increase by an integer factor.Upsampler –Time and frequency domain characterization of upsampler – Anti-imaging filter and interpolation system – Gain of anti-imaging filter – Changing the sampling rate by rational factors			15	
MODULE 2: Transposition theorem-Multirate identities - Direct and Transposed FIR structures for interpolation and decimation filters – The Polyphase decomposition - Polyphase implementation of decimation and interpolation filters.Commutator models - Multistage implementation of sampling rate conversion – Filter requirements for multistage designs – Overall and individual filter requirements.			15	
INTERNAL TEST 1 (MODULE 1 & 2)				
MODULE 3: Filter banks: QMF filter banks – Two channel SBC filter banks – Subband coding of speech signals- Standard QMF banks – Filter banks with PR – Conditions for PR – Conjugate Quadrature filters .Cosine modulated filter banks with PR - Biorthogonal and Linear phase filter banks with PR - Transmultiplexer filter banks – Uniform M channel filter banks			15	
MODULE 4: Tre communication-T recovery, FM ba Filtering interpret resolution trade o	6	15		
INTERNAL TEST 2 (MODULE 3 & 4)				

26 APJ Abdul Kalam Technological University/Cluster 4 /M. Tech Program in Advanced Electronics & Communication Engineering

MODULE 5: Motivation for Wavelet transform - The Continuous Wavelet Transform - scaling - shifting – Filtering view – Inverse CWT – Haar Wavelet – Discrete Wavelet transform – dyadic sampling. Filter bank implementation – Inverse DWT, Multiresolution formulation of Wavelet systems and Wavelet applications: Scaling function and wavelet function – dilation equation	8	20
MODULE 6 :Filter banks and the DWT - Analysis – from fine scale to coarse scale, Synthesis – from coarse scale to fine scale –Synthesis tree. Wavelet packets– Wavelet packet algorithms – Application of wavelet theory in signal denoising, Image and video compression. Application to communication systems– OFDM multicarrier communication, Wavelet packet based MCCS	9	20
END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6204	MIXED SIGNAL CIRCUIT DESIGN	3 -0-0: 3	2015

Course objectives

- To introduce to MOS models
- To give insight in to the design of opamp
- To analyze and design switched capacitor circuits, DAC & ADC

Syllabus

CMOS Technology - device modeling - CMOS amplifier - Design of CMOS Op Amp: - PSSR - comparators - Switched Capacitor Circuits - Z domain model - ADC and DAC - PLL - Sense amplifiers

Course Outcome:

Students finishing this course will have the ability

- to understandandanalyse MOS models
- to design opamp based circuits
- to analyseand design switched capacitor circuits, DAC & ADC

Text book

1. Phillip E. Allen, Douglas R. Holbery, CMOS Analog Circuit Design , Oxford, 2004

References

1.Razavi B., Design of Analog CMOS Integrated Circuits, Mc G Hill, 2001.

2. Baker, Li, Boyce, CMOS: Circuits Design, Layout and Simulation, Prentice Hall India, 2000

COURSE CODE:	COURSE TITLE	CRED	DITS	
04 EC 6204	4 EC 6204 Mixed Signal Circuit Design 3 -0-0		0: 3	
MODULES			Sem. Exam Marks (%)	
MODULE 1: CMOS Technology- Basic MOS semiconductor fabrication process. MOS transistors. CMOS device modelling, Small signal model for MOS transistors. Computer simulation model. Subthreshold MOS model		8	15	
MODULE 2: CM0 amplifier, Output	MODULE 2: CMOS amplifier. Differential amplifier, Cascode amplifier. Current amplifier, Output amplifiers. High gain amplifier architecture .			
	INTERNAL TEST 1 (MODULE 1 & 2)			
MODULE 3: Design of CMOS Op Amp- Compensation. Design of two stage op amp. PSSR of two stage opamp. Cascode op amp. Buffered op amp			15	
MODULE 4: High speed or frequency op amp, micro power op amp, Low noise op amp, Low voltage opamp, Design of two stage open loop comparators. High speed comparators			15	
	INTERNAL TEST 2 (MODULE 3 & 4)			
MODULE 5: Switched Capacitor Circuits- Switched capacitor amplifiers. Switched capacitor integrators. Z domain model of two phase switched capacitor.First order switched capacitor circuits, second order switched capacitor circuits. Switched capacitor filters			20	
MODULE 6 : PLL, Sense amplifiers, Characteristics of DAC, Parallel DAC, Serial DAC, ADC – High speed ADC, Over sampling ADC.			20	
	END SEMESTER EXAM			

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6206	SYSTEM DESIGN USING ARM	3 -0-0: 3	2015

Course Objectives:

To give the Student:-

- To provide an introduction about embedded system and ARM processors
- To understand instruction sets and assembly language programming of ARM
- To understand architectural support for high level languages and memory

Syllabus

General system design, ARM architecture and programming ,ARM Instruction Set,Architectural support and memory, Memory hierarchy

Course Outcome:

Use of ARM architecture and programming concepts into design process

Students who successfully understand ARM instruction set, memory architecture and hierarchy

Text book

1. ARM System-on-chip architecture, Steve Furber, Pearson Education

Reference:

2. Computers as Components-principles of Embedded computer system design, Wayne Wolf, Elseveir

COURSE CODE:	COURSE TITLE	CRED	DITS
04 EC 6206	SYSTEM DESIGN USING ARM	3 -0-0	D: 3
	MODULES	Contact Hours	Sem. Exam Marks (%)
MODULE 1: Gene Complex Systems Formalisms for Sy to processor de design, Instruction	ral system design Embedded Computing: Introduction, sand Microprocessor. The Embedded System Design Process, estem Design, Design Examples.ARM Introduction: Introduction sign-architecture andorganization, Abstraction in hardware in set design, Processor design trade offs, RISC.	6	15
MODULE 2: ARM architecture – A tools. ARM assem	architecture and programming Overview of ARM rchitecture inheritance, Programmer`s model, Development bly language programming	7	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
MODULE 3: ARM instruction set multiply instruction	M Instruction Set-ARM organizationand implementation. ARM (exceptions, conditional execution, branching instructions, ons, coprocessor instructions).	8	15
MODULE 4: Inst statements, Loop instruction set- branchinstruction	ruction Sets-Data types, Floating point datatypes, Conditional s, Use of memory, Run-time environment environment. Thumb Thumb bit, Thumb programmer`s model, Thumb s, Thumb software interrupt instructions	7	15
	INTERNAL TEST 2 (MODULE 3 & 4)		
MODULE 5: Arch development- Al specifications, H/ architecture, Emb Memory size and	itectural support and memory-Architectural support for system RM memory interface, AMBA, ARM reference peripheral w system prototyping tools, ARMulator, JTAG, ARM debug bedded trace, signal processing support, ARM processor cores. speed, On-chip memory, Caches, Memory management.	7	20
MODULE 6 : Mem system control Embedded ARM a asynchronous ARI	nory hierarchy-Architectural support for OS - Introduction, ARM coprocessor, ARM MMU architecture, Context switching. pplications-ARM7500 and ARM 7500FE & The SA-1100 AMULET M processors-Self-timed design & AMULET1.	7	20
	END SEMESTER EXAM		

ELECTIVE-II

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6108	MULTI CARRIER COMMUNICATIONSYSTEMS	3 -0-0: 3	2015

Pre-requisites: Nil

Objectives:

- To provide an overview of wireless channel characteristics •
- To understand the basic concepts of synchronization and channel estimation
- To evaluate its performance and discuss different channel optimization techniques •

Syllabus

Review of wireless channel characteristics - Multi carrier and OFDM system fundamentals -Differential and Coherent detection; Pilot symbol aided estimation - MMSE estimation - MIMO channel estimation, Concepts of Time and Frequency domain equalization - Clipping in Multi carrier systems - Power amplifier non linearity - Error probability analysis - Performance in AWGN – PAPR properties of OFDM signals – PAPR reduction techniques with signal distortion – Selective mapping and Optimization techniques.

Course Outcome:

Students finishing this course will have the ability

- to understandand analyze MOS models
- to design op-amp based circuits
- to analyseand design switched capacitor circuits, DAC & ADC

Text book

1. Ahmad R.S. Bahai, B.R. Saltzberg, M. Ergen, " Multi carrier Digital Communications-Theory and Applications of OFDM", Second Edition, Springer

References:

- 1. Y. Li. G. Stuber, "OFDM for Wireless Communication", Springer, 2006.
- 2. R. Prasad, " OFDM for Wireless Communication", Artech House, 2006

32 APJ Abdul Kalam Technological University/Cluster 4 /M. Tech Program in Advanced Electronics & Communication Engineering

	1.12	17-
E		
1	$^{+}$	T.
1	1	57
	C	7
0		

COURSE CODE:	COURSE TITLE	CRED	DITS
04 EC 6108	MULTI CARRIER COMMUNICATION SYSTEMS	3-0-(D: 3
	MODULES	Contact Hours	Sem. Exam Marks (%)
MODULE 1: Revie system fundamer Channel capacity	ew of wireless channel characteristics- Multi carrier and OFDM atals – OFDM system model - Comparison with single carrier - and OFDM	8	15
MODULE 2: FFT channels to OFD scheme: MC CDM	implementation – Power spectrum – Impairments of wireless M signals – Comparison with other multicarrier modulation A	6	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
MODULE 3: Synchronization in OFDM – Timing and Frequency Offset in OFDM, Synchronization & system architecture, Timing and Frequency Offset estimation – Pilot and Non pilot based methods, Joint Time & Frequency Offset estimation.		7	15
MODULE 4: Char detection; Pilot s arrangement; Dec	nnel Estimation in OFDM systems – Differential and Coherent symbol aided estimation - Block type and Comb type pilot ision directed channel estimation	7	15
	INTERNAL TEST 2 (MODULE 3 & 4)		1
MODULE 5: MN MIMO channel e domain equalizati	ISE estimation using time and frequency domain correlation; stimation- basic concepts; Concepts of Time and Frequency on.	7	20
MODULE 6 : Clipp Error probability signals – PAPR distortion less PAI	oing in Multi carrier systems – Power amplifier non linearity – analysis – Performance in AWGN. PAPR properties of OFDM reduction techniques with signal distortion; Techniques for PR reduction – Selective mapping and Optimization techniques	7	20
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6114	SPEECH TECHNOLOGY	3-0-0: 3	2015

Course objectives

- To learn human speech production mechanism and different categorization of sounds
- To learn various speech analysis techniques
- To study features and modeling techniques for speech recognition
- To understand the fundamentals of speech coding, synthesis and enhancement

Syllabus

Speech Production and Categorization of Speech Sounds - Introduction to speech signal processing – applications - human speech production mechanism - Speech Analysis - Time and frequency domain analysis, Review of DSP techniques-z-transform, Discrete Fourier transform - Speech Recognition - mel frequency cepstral coefficient(MFCC), dynamic time –warping(DTW), Gaussian mixture models (GMM), hidden Markov model(HMM), speaker and language recognition. Speech Coding, Speech Synthesis and Enhancement

Course Outcome:

Students finishing this course will have the ability

- To Categorize of Speech Sounds
- To analysespeech recognition models
- To analyse and model Speech Synthesis and Enhancement

Text Books:

- 1. Douglas O'Shaugnessy, "Speech Communication: Human and Machine", IEEE Press, 2000.
- 2. L. Rabiner, B. H. Juang and B. Yegnanarayana, "Fundamentals of Speech Recognition", Pearson India, 2009.

References:

1. T.F Quatieri, "Discrete-Time Speech Signal Processing- Principles and Practice", Pearson, 2002.

2. L.R. Rabiner and R. W. Schafer, "Theory and Applications of Digital Speech Processing", Pearson, 2010.

3. J R Deller, J H L Hansen, J G Proakis, "Discrete-time Processing of Speech Signals, IEEE

4 APJ Abdul Kalam Technological University/Cluster 4 /M. Tech Program in Advanced Electronics & Communication Engineering

COURSE CODE:	COURSE TITLE	CRED	DITS
04 EC 6114	Speech Technology	3-0-(0:3
	MODULES	Contact Hours	Sem. Exam Marks (%)
MODULE 1:Sp Introduction to s applications, hum production, natu categorization of	eech Production and Categorization of Speech Sounds- peech signal processing, overview of speech signal processing nan speech production mechanism, Acoustic theory of speech are of speech signal, spectrographic analysis of speech, speech sounds, co-articulation, prosody	8	15
MODULE 2: Spe DSP techniques-z speech, linear pre	ech Analysis- Time and frequency domain analysis, Review of -transform, Discrete Fourier transform, short-time analysis of diction analysis, cepstral analysis	6	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
MODULE 3: Con quantization(VQ)	trasting linear prediction analysis and cepstral analysis, vector methods.	7	15
MODULE 4: Spec frequency cepstra	ech recognition, Bayes rule, segmental feature extraction, mel Il coefficient(MFCC), dynamic time –warping(DTW)	7	15
	INTERNAL TEST 2 (MODULE 3 & 4)		
MODULE 5: Gau approaches for sp	ussian mixture models (GMM), hidden Markov model(HMM), neech, speaker and language recognition	7	20
MODULE 6 : Spe coding, CELP coo enhancement Rac	ech coding, time-domain waveform coding, Linear predictive ling. Principles of speech synthesis, fundamentals of speech lios. Spectrum Sensing to Detect Specific Primary System	7	20

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6208	VLSI SIGNAL PROCESSING	3 -0-0: 3	2015

Course Objectives:

- To study algorithms and parallel processing
- To understand various DSP architectures and filters
- To provide an insight into Pipelining of recursive filters

Syllabus

Review of DSP algorithms - DSP algorithm Representation - Iteration Bound - Loop Bound -Pipelining and Parallel Processing for FIR filters -Pipelining and Parallel Processing for low power -Retiming Techniques –Unfolding algorithm – Folding – Transformations -Systolic DSP architecture design–fast convolution algorithms

Course Outcome:

Students finishing this course will have the ability

- To apply pipelining and parallel processing techniques for performance enhancement
- To analysedata flow graphs for retiming, folding and unfolding
- To perform fast convolution operations

Text book

1. K. K. Parhi, "VLSI Digital Signal Processing", Wiley India, 2008

- 1 P. Pirsch, "Architecture for Digital Signal Processing", Wiley, 2011.
- 2 M. A. Bayoumi, "VLSI Design Methodologies for DSP Architecture", Kluwer Academic, 1993.

- 1	677R	Υ.
4	d	ĽĽ.
1	Ó	1
2	N.	~

COURSE CODE:	COURSE TITLE	CRED	DITS
04 EC 6208	VLSI SIGNAL PROCESSING	3-0-0:3	
	MODULES	Contact Hours	Sem. Exam Marks (%)
MODULE 1: Rev Bound Algorithms	iew of DSP algorithms, Iteration Bound, Loop Bound, Iteration , Iteration Bound for multirate data flow graphs.	7	15
MODULE 2: Pip parallel processing	elining and Parallel Processing: Introduction, pipelining and g of FIR filters pipelining and parallel processingfor low power	6	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
MODULE 3: Retin techniques- cutse	ning-introduction, properties, system inequalities, retiming t retiming and pipelining, retiming for clock period minimisation	7	15
MODULE 4: Unfo path unfolding an processing- 3-unfo	lding: Introduction, unfolding algorithm, properties, critical d retiming, applications- sample period reduction, parallel old and 3-parallel examples	7	15
	INTERNAL TEST 2 (MODULE 3 & 4)		
MODULE 5: Folding: Introduction, Transformation, register minimization techniques- life time analysis, data allocation using forward-backward register allocation folding of multi rate systems		7	20
MODULE 6: Systo systolic array, n Winograd algorith	lic architecture design: Introduction, Design Methodologies, FIR natrix-matrix multiplication, Fast convolution: Cook Toom, ims, Iterated convolution	8	20
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6212	Mobile Computing	3 -0-0: 3	2015

Course Objectives:

To give the Student:-

- To learn about the concepts and principles of mobile computing;
- To explore both theoretical and practical issues of mobile computing;
- To develop skills of finding solutions and building software for mobile computing applications.

Syllabus

Mobile Computing (MC): Motivations, concepts and challenges, Wireless communication concepts, GSM: Mobile services, Mobile IP, Hoarding Techniques, Transactional models, Communications asymmetry, Pull-based mechanisms.

Course Outcome:

Grasp the concepts and features of mobile computing technologies and applications. The student have a good understanding of how the underlying wireless and mobile communication networks work, their technical features, and what kinds of applications they can support. He could identify the important issues of developing mobile computing systems and applications.

Text Books:

1. JochenSchiller, "Mobile Communications", Addison-Wesley., 2nd edition, 2004

- 1. Stojmenovic and Cacute, "Handbook of Wireless Networks and Mobile Computing", Wiley, 2002, ISBN 0471419028.
- 2. Reza Behravanfar, "Mobile Computing Principles: Designing and Developing Mobile Applications with UML and XML", ISBN: 0521817331, Cambridge University Press, October 2004,
- Adelstein, Frank, Gupta, Sandeep KS, Richard III, Golden, Schwiebert, Loren, "Fundamentals of Mobile and Pervasive Computing", ISBN: 0071412379, McGraw-Hill Professional, 2005.
- 4. Hansmann, Merk, Nicklous, Stober, "Principles of Mobile Computing", Springer, 2nd edition, 2003.
- 5. MartynMallick, "Mobile and Wireless Design Essentials", Wiley DreamTech, 2003.
 - 38 APJ Abdul Kalam Technological University/Cluster 4 |M. Tech Program in Advanced Electronics & Communication Engineering

COURSE CODE:	COURSE TITLE	CRED	DITS
04 EC 6212	Mobile Computing	3-0-0:3	
	MODULES	Contact Hours	Sem. Exam Marks (%)
MODULE 1: Mobi applications of mo Internet computir and architectures.	le Computing (MC): Motivations, concepts, challenges, and obile computing; relationship with distributed computing, ng, ubiquitous/pervasive computing. Mobile computing models	8	15
MODULE 2: Wirel networks:Cellar n SatelliteNetworks	less communication concepts; classification of wireless etworks (1G, 2G, 3G, 4G), WLAN, WPAN, WMAN, . SDMA, FDMA, TDMA, CDMA	8	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
MODULE 3: GSI Protocols, Localize Motivation for a terminals)	M: Mobile services, System architecture, Radio interface, ation and calling, Handover, Security, and New data services. specialized MAC (Hidden and exposed terminals, Near and far	8	15
MODULE 4: Mot delivery, agent encapsulation, o Traditional TCP, recovery, Transmi oriented TCP.	bile IP (Goals, assumptions, entitiesand terminology, IP packet advertisement and discovery, registration, tunneling and ptimizations)Dynamic Host Configuration Protocol (DHCP). Indirect TCP, Snooping TCPMobile TCP, Fast retransmit/fast ission /time-out freezing, Selective retransmission, Transaction	8	15
	INTERNAL TEST 2 (MODULE 3 & 4)		
MODULE 5: Ho servercomputing computingTransac service issues	parding techniques, caching invalidation mechanisms, client with adaptation, power-aware and context-aware ctional models, query processing, recovery, and quality of	5	20
MODULE 6: Co deliverymechanisi mechanisms, selec	ommunications asymmetry, classification of new data ms, push-based mechanisms.Pull-based mechanisms, hybrid ctive tuning (indexing) techniques	5	20
	END SEMESTER EXAM		

39 APJ Abdul Kalam Technological University/Cluster 4 /M. Tech Program in Advanced Electronics & Communication Engineering

1	6.7	30	H.	2
		I.		I
	C	Ц	1	ļ
V.	2	ŝ.	80	t
	L	Э	7	
	-	т.		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6116	MIMO COMMUNICATION SYSTEMS	3 -0-0: 3	2015

Objectives

Upon completing the course, the student will:

- be familiar with the basics of MIMO communication;
- be familiar with various Diversity and Multiplexing techniques of MIMO;
- be exposed to Space Time Block Codes;

Syllabus

Theoretic aspects of MIMO : Review of SISO fading communication channels, MIMO channel models - MIMO Diversity and Spatial multiplexing - Space time receivers - Space Time Block Codes - Performance analysis - Space Time Trellis Codes - Delay diversity - Performance analysis.

Course Outcome:

Students finishing this course will have the ability

- To model MIMO channels
- To analyseDiversity and Multiplexing techniques of MIMO
- To analysespace time block codes

Text books

- 1. David Tse and PramodViswanath, "Fundamentals of Wireless Communication", Cambridge University Press 2005
- 2. Hamid Jafarkhani, "Space-Time Coding: Theory and Practice", Cambridge University Press 2005

References:

- 1. Paulraj, R. Nabar and D. Gore, "Introduction to Space-Time Wireless Communications", Cambridge University Press 2003
- 2. E.G. Larsson and P. Stoica, "Space-Time Block Coding for Wireless Communications", Cambridge University Press 2008

3.EzioBiglieri, Robert Calderbank et al "MIMO Wireless Communications" Cambridge University Press 2007

⁴⁰ APJ Abdul Kalam Technological University/Cluster 4 | M. Tech Program in Advanced Electronics & Communication Engineering

COURSE CODE: COURSE TITLE CREDITS					
04 EC 6116	04 EC 6116 MIMO Communication Systems				
	Contact Hours	Sem. Exam Marks (%)			
MODULE 1: Review of SISO fading communication channels, MIMO channel models, Classical i.i.d. and extended channels. Frequency selective and correlated channel models, Capacity of MIMO channels			15		
MODULE 2: Erg channel propertie	6	15			
	INTERNAL TEST 1 (MODULE 1 & 2)				
MODULE 3: MII diversity, analysis Alamouti space tin	7	15			
MODULE 4: ML, ZF, MMSE and Sphere decoding, BLAST receivers and Diversity multiplexing trade-off.Space time block codes on real and complex orthogonal designs, Code design criteria for quasi-static channels (Rank, determinant and Euclidean distance)			15		
	INTERNAL TEST 2 (MODULE 3 & 4)				
MODULE 5: Orthogonal designs, Generalized orthogonal designs, Quasi- orthogonal designs and Performance analysis.			20		
MODULE 6: Repre matrix, state-tra diversity as a spec	7	20			
	END SEMESTER EXAM	END SEMESTER EXAM			

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6214	Nano Electronics	3 -0-0: 3	2015

Course Objectives:

To give the Student:-

• To learn and understand basic and advance concepts of Nano electronics.

Syllabus

Basics of Nanoelectronics, Basics of lithographic techniques for Nano electronics , Quantum electron devices, Nanoelectronics with tunneling devices and superconducting devices, Principles of Single Electron Transistor (SET), Nano designs and Nanocontacts, A survey about the limits, Limits due to thermal particle motion Memory devices and sensors, Ferroelectric thin film properties and integrationgas sensitive FETs

Course Outcome:

The students should be able to understand basic and advanced concepts of nanoelectronic devices, sensors and transducers and their applications in nanotechnology.

Text Books:

- 1. Nanoelectronics and Nanosystems, Karl Goser, Peter Glosekotter, Jan Dienstuhl., Springer, 2004
- Nanotechnology: basic science and emerging technologies Mick Wilson, KamaliKannangara, Geoff Smith, Michelle Simmons, BurkhardRaguse, Overseas Press (2005)

- 1. Nanoelectronics and information technology : Advanced electronic materials and novel devices (2nd edition) Rainer Waser (ed.) Wiley VCH VerlagWeiheim (2005)
- 2. Nanoelectronics and Information Technology by Rainer Waser (edition, 2005) from John Wiley & Sons, Germany.
- **3.** Nanoelectronics and Nanosystems: From Transistors to Molecular and Quantum Devices by K. Goser (Edition, 2004), Springer. London
 - 42 APJ Abdul Kalam Technological University/Cluster 4 |M. Tech Program in Advanced Electronics & Communication Engineering

a. <u>-</u>		CREDITS	
04 EC 6214 Nano Electronics		3-0-0:3	
MODULES			
s of Nanoelectronics – capabilities of Nanoelectronics – physical Nanoelectronics – basics of information theory – the tools for to fabrication – basics of lithographic techniques for	8	15	
antum electron devices – from classical to quantum physics: nic devices – electrons in mesoscopic structure – short channel split gate transistor – electron wave transistor – electron spin rum cellular automate – quantum dot array.	8	15	
INTERNAL TEST 1 (MODULE 1 & 2)			
pelectronics with tunneling devices and superconducting devices ent technology - RTD: circuit design based RTD – Defect tolerant es of Single Electron Transistor (SET) – SET circuit design – een FET and SET circuit design.	8	15	
ecular electronics – elementary circuits – flux quantum devices – perconducting devices – Nanotubes based sensors, fluid flow , Strain –oxide nanowire, gas sensing (ZnO,TiO2,SnO2,WO3), LPG powder)- Nano designs and Nanocontacts – metallic	8	15	
INTERNAL TEST 2 (MODULE 3 & 4)			
rvey about the limits – Replacement Technologies – Energy and – Parameter spread as Limiting Effect – Limits due to thermal Reliability as limiting factor – Physical limits – Final objectives of nd systems	5	20	
MODULE 6: Memory devices and sensors – Nano ferroelectrics – Ferroelectric random access memory – Fe-RAM circuit design – ferroelectric thin film properties and integration – calorimetric sensors – electrochemical cells – surface and bulk acoustic devices – gas sensitive FETs – resistive semiconductor gas sensors –electronic noses – identification of hazardous solvents and gases – semiconductor sensor array.			
	MODULES s of Nanoelectronics – capabilities of Nanoelectronics – physical Nanoelectronics – basics of information theory – the tools for io fabrication – basics of lithographic techniques for antum electron devices – from classical to quantum physics: nic devices – electrons in mesoscopic structure – short channel split gate transistor – electron wave transistor – electron spin um cellular automate – quantum dot array. INTERNAL TEST 1 (MODULE 1 & 2) velectronics with tunneling devices and superconducting devices ent technology - RTD: circuit design based RTD – Defect tolerant es of Single Electron Transistor (SET) – SET circuit design – een FET and SET circuit design. ecular electronics – elementary circuits – flux quantum devices – berconducting devices – Nanotubes based sensors, fluid flow , Strain –oxide nanowire, gas sensing (ZnO,TiO2,SnO2,WO3), LPG powder)- Nano designs and Nanocontacts – metallic INTERNAL TEST 2 (MODULE 3 & 4) rvey about the limits – Replacement Technologies – Energy and – Parameter spread as Limiting Effect – Limits due to thermal Reliability as limiting factor – Physical limits – Final objectives of nd systems nory devices and sensors – Nano ferroelectrics – Ferroelectric memory – Fe-RAM circuit design – ferroelectric thin film ntegration – calorimetric sensors – electrochemical cells – acoustic devices – gas sensitive FETs – resistive semiconductor tronic noses – identification of hazardous solvents and gases – msor array.	MODULES Contact Hours s of Nanoelectronics – capabilities of Nanoelectronics – physical Nanoelectronics – basics of information theory – the tools for to fabrication – basics of lithographic techniques for 8 antum electron devices – from classical to quantum physics: nic devices – electrons in mesoscopic structure – short channel split gate transistor – electron wave transistor – electron spin um cellular automate – quantum dot array. 8 INTERNAL TEST 1 (MODULE 1 & 2) 9 electronics with tunneling devices and superconducting devices ent technology - RTD: circuit design based RTD – Defect tolerant es of Single Electron Transistor (SET) – SET circuit design – een FET and SET circuit design. 8 ecular electronics – elementary circuits – flux quantum devices – perconducting devices – Nanotubes based sensors, fluid flow, Strain –oxide nanowire, gas sensing (ZnO,TiO2,SnO2,WO3), LPG powder)- Nano designs and Nanocontacts – metallic 8 INTERNAL TEST 2 (MODULE 3 & 4) 5 rvey about the limits – Replacement Technologies – Energy and – Parameter spread as Limiting Effect – Limits due to thermal Reliability as limiting factor – Physical limits – Final objectives of nd systems 5 nory devices and sensors – Nano ferroelectric – Ferroelectric memory – Fe-RAM circuit design – ferroelectric thin film ntegration – calorimetric sensors – electrochemical cells – acoustic devices – gas sensitive FETS – resistive semiconductor tronic noses – identification of hazardous solvents and gases – msor array. 5	

43 APJ Abdul Kalam Technological University/Cluster 4 /M. Tech Program in Advanced Electronics & Communication Engineering

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6122	OPTIMIZATION TECHNIQUES	3 -0-0: 3	2015

Objectives:

- To learn the various techniques pertaining to linear and nonlinear optimization problems
- To be introduced to graph theory and combinatorial optimization.

Syllabus

Unconstrained optimization - one dimensional search methods - gradient methods -Linear Programming - Convex polyhedral -Simplex algorithm - Matrix form of the simplex algorithm - non simplexmethods - Nonlinear Constrained Optimization: - Introduction to Graph Theory and Combinatorial Optimization

Course Outcome:

Students finishing this course will have the ability

- To apply the concepts of optimization to specific engineering problems
- To analyseproblems based on graph theory and combinatorial optimization

Text books

- 1. Edwin K. P. Chong, Stanislaw H. ZAK, An Introduction to Optimization, 2nd Ed, John Wiley & Sons
- 2. Stephen Boyd, LievenVandenberghe, Convex Optimization, CUP, 2004.

- 1. R. Fletcher, Practical methods of Optimization, Wiley, 2000
- 2. Jonathan L Grosss, Jay Yellen, Chapmamn and Hall, Graph theory and itsapplication, 2e,CRC pub,
- 3. Alan Tucker, Applied Combinatorics, John wiley and Sons
- 4. Dimitri P. Bertsekas, Nonlinear programming, Athena Scientific
- 5. Belegundu, Optimization Concepts and Applications in Engineering, Prentice Hall, 2000
- 6. N Christofied, A Mingoss, P Toth, C Sandi, Combinatorial Optimization, John wiley& Sons
- 7. Sivan Pemmaraju, S Skiens, Computational Discrete Mathematics, CUP, 2003
 - 44 APJ Abdul Kalam Technological University/Cluster 4 |M. Tech Program in Advanced Electronics & Communication Engineering

27	ù R	14
ы	5	U.
	C	y
	1	-

COURSE CODE:	COURSE TITLE	CRED	DITS
04 EC 6122	04 EC 6122 Optimization Techniques		
	Contact Hours	Sem. Exam Marks (%)	
MODULE 1: Unco local minima, or descent, Inverse H	onstrained optimization- Necessary and sufficient conditions for ne dimensional search methods, gradient methods, steepest Hessian	8	15
MODULE 2: New algorithm, quasi N	7	15	
	INTERNAL TEST 1 (MODULE 1 & 2)		
MODULE 3: Linea programming, Bas algorithm, Duality method	8	15	
MODULE 4: Nonl multipliers, inequ optimization, Geo methods	inear Constrained Optimization- Equality constraints – Lagrange ality constraints – Kuhn-Tucker conditions. Convex metric programming, Projected gradient methods, Penalty	8	15
	INTERNAL TEST 2 (MODULE 3 & 4)		1
MODULE 5: OptimizationRout constraintsatisfial	Introduction to Graph Theory and Combinatorial ing-traveling salesman; Assignment – satisfiabilty, pilty, graph coloring	6	20
MODULE 6:Subse Critical path algor	5	20	
	END SEMESTER EXAM		

⁴⁵ APJ Abdul Kalam Technological University/Cluster 4 /M. Tech Program in Advanced Electronics & Communication Engineering

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6216	Optical Networks And Systems	3 -0-0: 3	2015

Course Objectives:

To give the Student:-

- A basis in unguided optical communication system, integrated optics and optical switches;
- A foundation about digital transmission systems;
- A guide to design different multiplexing schemes;
- An overview to Soliton Systems;

Syllabus

Unguided optical communication system, integrated optics, active and passive components, optomechanical switches, all optical switches, digital transmission systems, transmission distance for single mode link line coding, NRZ codes, RZ codes, block codes, multiplexing schemes, fiber grating filters, Tunable filters, system consideration and tunable filter types, optical amplifiers, optical networks, SONET/SDH, transmission formats and speeds, optical interfaces, SONET/SDH rings, SONET/SDH networks, Nonlinear effects on network performance, Solitons, Optical CDMA, Ultra high capacity networks.

Course Outcome:

Students finishing this course will have the ability to be familiar with unguided optical communication system; Use the passive and active components ; realize the use of optical switches; Understand the use of different optical amplifier for different purpose; Use the solitons in an apt manner.

Text Books:

1. G. Keiser , "Optical Fibre Communication" 3rd Ed, 2000

References:

- 1. J. M. Senior, "Optical Fibre Communications", Prentice Hall India 1994
- 2. C. Agarwal, "Fibre Optic Communication", Wheeler, 1993.
- 3. J. Gowar, "Optical Fibre Communication Systems", Prentice Hall, 1995.
- 4. Suematsu, Iga, "Introduction to Optical Fibre Communication", John Wiley, 1982.
- 5. J. Palais , "Fibre Optic Communication", Prentice Hall International 1988

46 APJ Abdul Kalam Technological University/Cluster 4 |M. Tech Program in Advanced Electronics & Communication Engineering

04 EC 6216Optical Networks And Systems3-0-J-JMODULESContact HoursSem. Exam Marks (%)MODULE 1: Unguided optical communication system: transmission parameters, beam divergence, atmospheric attenuation, guided wave communication, merits of optical fibre communication systems, basic network information rates, time evolution of fibre optic systems, elements of optical fiber transmission link/ repeaters6MODULE 2: Integrated optics, active and passive components, opto-mechanical switches, parameter of optical switches, optical Packet Switch, optical Burst Switchand all optical switches.6MODULE 3: Digital transmission systems: Point to point links, system considerations, link power budget, rise-time budget, first window transmission distance, transmission distance for single mode link line coding, NRZ codes, RZ codes, block codes615MODULE 4: Coherrent systems, homodyne and heterodyne detection. Multiplexing schernes, TDM, WDM concepts and components, operational principles of WDM, passive components, 2 x 2 fibre coupler, fiber grating filters, trunable filters, system consideration and tunable filter types.615MODULE 5: Optical amplifiers: general applications and amplifier gian, erbium doped fiber amplifiers, external pumping, amplifier gain, erbium doped fiber amplifiers, amplification mechanism, EDFA architecture, EDFA power620
MODULESContact HoursSem. Exam Marks (%)MODULE 1: Unguided optical communication system: transmission parameters, beam divergence, atmospheric attenuation, guided wave communication, merits of optical fibre communication systems, basic network information rates, time evolution of fibre optic systems, elements of optical fiber transmission link/ repeaters615MODULE 2: Integrated optics, active and passive components, opto-mechanical switches, parameter of optical switches, optical Packet Switch, optical Burst Switchand all optical switches.615INTERNAL TEST 1 (MODULE 1 & 2)615MODULE 3: Digital transmission systems: Point to point links, system considerations, link power budget, rise-time budget, first window transmission distance, transmission distance for single mode link line coding, NRZ codes, RZ codes, block codes615MODULE 4: Coherent systems, homodyne and heterodyne detection. Multiplexing schemes, TDM, WDM concepts and components, operational principles of WDM, passive components, 2 x 2 fibre coupler, fiber grating filters, trunable filters, system consideration and tunable filter types.615INTERNAL TEST 2 (MODULE 3 & 4)615MODULE 5: Optical amplifiers; general applications and amplifier gian, erbium doped fiber amplifiers, amplification mechanism, EDFA architecture, EDFA power conversion efficiency and gain, amplifier noise.620
MODULE 1: Unguided optical communication system: transmission parameters, beam divergence, atmospheric attenuation, guided wave communication, merits of optical fibre communication systems, basic network information rates, time evolution of fibre optic systems, elements of optical fiber transmission link/ repeaters615MODULE 2: Integrated optics, active and passive components, opto-mechanical switches, parameter of optical switches, optical Packet Switch, optical Burst Switchand all optical switches.615MODULE 3: Digital transmission systems: Point to point links, system considerations, link power budget, rise-time budget, first window transmission distance, transmission distance for single mode link line coding, NRZ codes, RZ codes, block codes615MODULE 4: Coherent systems, homodyne and heterodyne detection. Multiplexing schemes, TDM, WDM concepts and components, operational principles of WDM, passive components, 2 x 2 fibre coupler, fiber grating filters, Tunable filters, system consideration and tunable filter types.615MODULE 5: Optical amplifiers: general applications and amplifier types, semiconductor optical amplifiers, external pumping, amplifier gain, erbium doped fiber amplifiers, amplification mechanism, EDFA architecture, EDFA power conversion efficiency and gain, amplifier noise.620
MODULE 2: Integrated optics, active and passive components, opto-mechanical switches, parameter of optical switches, optical Packet Switch, optical Burst615INTERNAL TEST 1 (MODULE 1 & 2)MODULE 3: Digital transmission systems: Point to point links, system considerations, link power budget, rise-time budget, first window transmission distance, transmission distance for single mode link line coding, NRZ codes, RZ codes, block codes615MODULE 4: Coherent systems, homodyne and heterodyne detection. Multiplexing schemes, TDM, WDM concepts and components, operational principles of WDM, passive components, 2 x 2 fibre coupler, fiber grating filters, Tunable filters, system consideration and tunable filter types.615MODULE 5: Optical amplifiers: general applications and amplifier types, semiconductor optical amplifiers, external pumping, amplifier gain, erbium doped fiber amplifiers, amplification mechanism, EDFA architecture, EDFA power conversion efficiency and gain, amplifier noise.620
INTERNAL TEST 1 (MODULE 1 & 2)MODULE 3: Digital transmission systems: Point to point links, system considerations, link power budget, rise-time budget, first window transmission distance, transmission distance for single mode link line coding, NRZ codes, RZ codes, block codes615MODULE 4: Coherent systems, homodyne and heterodyne detection. Multiplexing schemes, TDM, WDM concepts and components, operational principles of WDM, passive components, 2 x 2 fibre coupler, fiber grating filters, Tunable filters, system consideration and tunable filter types.615MODULE 5: Optical amplifiers: general applications and amplifier types, semiconductor optical amplifiers, external pumping, amplifier gain, erbium doped fiber amplifiers, amplification mechanism, EDFA architecture, EDFA power conversion efficiency and gain, amplifier noise.620
MODULE 3: Digital transmission systems: Point to point links, system considerations, link power budget, rise-time budget, first window transmission distance, transmission distance for single mode link line coding, NRZ codes, RZ codes, block codes15MODULE 4: Coherent systems, homodyne and heterodyne detection. Multiplexing schemes, TDM, WDM concepts and components, operational principles of WDM, passive components, 2 x 2 fibre coupler, fiber grating filters, Tunable filters, system consideration and tunable filter types.615MODULE 5: Optical amplifiers: general applications and amplifier types, semiconductor optical amplifiers, external pumping, amplifier gain, erbium doped fiber amplifiers, amplification mechanism, EDFA architecture, EDFA power conversion efficiency and gain, amplifier noise.620
MODULE 4: Coherent systems, homodyne and heterodyne detection. Multiplexing schemes, TDM, WDM concepts and components, operational principles of WDM, passive components, 2 x 2 fibre coupler, fiber grating filters, Tunable filters, system consideration and tunable filter types.615INTERNAL TEST 2 (MODULE 3 & 4)MODULE 5: Optical amplifiers: general applications and amplifier types, semiconductor optical amplifiers, external pumping, amplifier gain, erbium doped fiber amplifiers, amplification mechanism, EDFA architecture, EDFA power conversion efficiency and gain, amplifier noise.620
INTERNAL TEST 2 (MODULE 3 & 4)MODULE5: Optical amplifiers: general applications and amplifier types, semiconductor optical amplifiers, external pumping, amplifier gain, erbium doped fiber amplifiers, amplification mechanism, EDFA architecture, EDFA power conversion efficiency and gain, amplifier noise.620
MODULE5: Optical amplifiers: general applications and amplifier types, semiconductor optical amplifiers, external pumping, amplifier gain, erbium doped fiber amplifiers, amplification mechanism, EDFA architecture, EDFA power620conversion efficiency and gain, amplifier noise.20
MODULE 6:Optical networks: network topologies, performance of passive linear buses, performance of star architectures, SONET/SDH, transmission formats and speeds, optical interfaces, SONET/SDH rings, SONET/SDH networks, Nonlinear effects on network performance, Solitons, Optical CDMA, Ultra high capacity networks.

47 APJ Abdul Kalam Technological University/Cluster 4 |M. Tech Program in Advanced Electronics & Communication Engineering

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6292	MINIPROJECT	0-0-4: 2	2015

Each student shall prepare a seminar paper on any topic of interest related to the core/elective courses being undergone in the second semester of the M.Techprogramme. He/she shall select paper from IEEE/other reputed international journals. They should get the paper approved by the Programme Coordinator/Faculty Members in the concerned area of specialization and shall present it in the class in the presence of Faculty in-charge of seminar class. Every student shall participate in the seminar. Grade will be awarded on the basis of the student's paper, presentation and his/her participation in the seminar.

Goals: This course is designed to improve written and oral presentation skills and to develop confidence in making public presentations, to provide feedback on the quality and appropriateness of the work experience, and to promote discussions on design problems or new developments.

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 6294	FPGA DESIGN LAB	0 -0-2: 1	2015

Objectives:

- To develop an idea about the basic combinational logic programming.
- To program sequential logic, memories and state machines
- To design systems using FPGA and CPLD

Modeling and Functional Simulation of the following digital circuits (with Xilinx/ ModelSim tools) using Verilog Hardware Description Languages

1. Part – I

Combinational Logic: Basic Gates, Multiplexer, Comparator, Adder/ Substractor, Multipliers, Decoders, Address decoders, parity generator, ALU

2. Part – II

Sequential Logic: D-Latch, D-Flip Flop, JK-Flip Flop, Registers, Ripple Counters, Synchronous Counters, Shift Registers (serial-to-parallel, parallel-to-serial), Cyclic Encoder / Decoder.

3. Part – III

Memories and State Machines: Read Only Memory (ROM), Random Access Memory (RAM), Mealy State Machine, Moore State Machine, Arithmetic Multipliers using FSMs

4. Part-IV:

FPGA System Design: Demonstration of FPGA and CPLD Boards, Demonstration of Digital design using FPGAs and CPLDs. Implementation of UART/Mini Processors on FPGA/CPLD

*** Programming can be done using any complier. Download the programs on FPGA/CPLD boards and performance testing may be done using pattern generator (32 channels) and logic analyzer apart from verification by simulation with any of the front end tools.

SEMESTER III

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 7201	DESIGN OF ASIC	3 -0-0: 3	2015

Pre-requisites: Nil

Objectives

- To study various types of ASICs and FPGAs
- To provide an insight into synchronous Design Using Programmable Devices
- To study System Design Using Verilog HDL

Syllabus

Introduction to ASICs -Types of ASICs - PLD – FPGA - Logical effort - Programmable ASICS, Programmable ASIC Logic cells: Anti fuse, static RAM, EPROM and EEPROM technology - PREP benchmarks – examples of Actel, Xilinx Altera FPGA architectures- Synchronous Design Using Programmable Devices- System Design Using Verilog HDL -Modellinghardware units using Verilog

Course Outcome:

Students finishing this course will have the ability

- To properly select programmable logic devices for various applications
- To analyse data flow graphs for retiming, folding and unfolding
- To analyse Verilog modeling of hardware

Text books

- 1. M. J. S. Smith, "Application-specific integrated circuits", Addison-Wesley Longman, 1997.
- 2. J. M. Yarbrough "Digital Logic applications and Design", Thomson Learning, 2001

- 1. S. Palnitkar, "Verilog HDL", Pearson Education, 1996.
- Data sheet: Spartan-3 FPGA Family Advanced Configuration Architecture Xilinx XAPP452 (v1.1) June 25, 2008
- 3. Cyclone III Device Hand book, Volume 1
- 4. Brown, "VLSI Circuits and Systems in Silicon", McGraw Hill, 1991.
- 5. S. D. Brown, R. J. Francis, J. Rox, Z. G. Vranesic, "Field Programmable gate arrays", Kluwer Academic publisher, 1992.
- 6. S. Y. Kung, H. J. Whilo House, T. Kailath, "VLSI and Modern Signal Processing", Prentice Hall, 1985.
- 7. C. H. Roth Jr., "Fundamentals of Logic design", Thomson Learning- 2004.

COURSE CODE:	COURSE TITLE	CRED	DITS
04 EC 7201	DESIGN OF ASIC	3-0-	0:3
	MODULES	Contact Hours	Sem. Exam Marks (%)
MODULE 1: Intro ASIC, standard ce	duction to ASICs, Types of ASICs, full custom ASIC, semi custom I based ASIC, gate array based ASIC	7	15
MODULE 2: Pr ASICS, Programma technology, PREP	rogrammable ASIC, PLD, FPGA, Logical effort, Programmable able ASIC Logic cells, Anti fuse, static RAM, EPROM and EEPROM benchmarks.	7	15
	INTERNAL TEST 1 (MODULE 1 & 2)		
MODULE 3: Actel (Xilinx Spartan-3,	ACT, Xilinx LCA, Altera FLEX, Altera MAX, Architecture of FPGAs Altera Cyclone-3).	7	15
MODULE 4: Synchronous Design Using Programmable Devices, EPROM to Realize a Sequential Circuit, Programmable Logic Devices, Designing a Synchronous Sequential Circuit using a GAL, EPROM, Realization State machine using PLD, FPGA, Xilinx FPGA (Xilinx 2000, Xilinx 3000.).			15
	INTERNAL TEST 2 (MODULE 3 & 4)		
MODULE 5: S combinational Cir Verilog codes.	ystem Design Using Verilog HDL, Verilog Description of cuits, arrays, Verilog operators, Compilation and simulation of	7	20
MODULE 6: Mod machine, combina	7	20	
	END SEMESTER EXAM		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 7203	VLSI STRUCTURES FOR DSP	3 -0-0: 3	2015

Pre-requisites: VLSI Signal processing

Course objective

- To have an understanding about the pipelining used in FIR and IIR filters.
- To understand the designing and features of parallel FIR filter
- To learn about the characteristic features of a IIR filter
- Basic knowledge about DSP processors used in various communication systems

Syllabus

Review of Pipelining and parallel processing for FIR filters-algorithmic strength reduction-Parallel FIR filters - Discrete time cosine transform - rank order filters Pipelining and parallel processing for IIR filters – low power IIR filters – pipelined adaptive digital filters - Scaling and round off noise in pipelined IIR filters –DSP Processors - Evolution of programmable DSP processors – DSP processors for mobile and wireless communications – processors for multimedia signal processing – FPGA implementation of DSP processors.

Course Outcome:

Students finishing this course will have the ability

- To apply pipelining and parallel processing techniques for performance enhancement on IIR and adaptive systems
- To analyse scaling and round-off noise in IIR filters
- To analyse the features of DSP processors used in various applications

Text books

 Keshab K. Parhi, VLSI Digital signal processing Systems: Design and Implementation, JohnWiley& Sons, 1999

References

1. Uwemeyer-Baes, DSP with Field programmable gate arrays, Springer, 2001

O4 EC 7203 VLSI Structures For DSP 3-0-J-J MODULES MODULES Contact Hours Exam Marks (%) MODULE 1: Review of Pipelining and parallel processing for FIR filters, algorithmic strength reduction-introduction, parallel FIR filters, Discrete Cosine Transform and inverse DCT 7 15 MODULE 2: Discrete time cosine transform – implementation of DCT and inverse DCT based on algorithm-architecture transformations – parallel architectures for 7 15 MODULE 3: Discrete time cosine transform – implementation of DCT and inverse DCT based on algorithm-architecture transformations – parallel architectures for 7 15 MODULE 3: Discrete time cosine transform – implementation of DCT and inverse DCT based on algorithm-architecture transformations – parallel architectures for 7 15 MODULE 3: Dipelining in IIR filters – parallel processing for IIR filters – combined pipelining and parallel processing of IIR filters. 7 15 MODULE 4: Low power IIR filter design, Pipelined adaptive digital filters- risked look ahead 7 15 MODULE 5: Scaling and round off noise - Round off noise in pipelined IIR filters – low power CMOS lattice IIR filters, pipelining of lattice IIR digital filters – low power CMOS lattice IIR filters (DSP processors – DSP processors for multimedia signal processing – FPGA implementation of DSP processors 7 20	COURSE CODE:	COURSE TITLE	CRED	DITS		
MODULES Contact Hours Sem. Exam Marks (%) MODULE 1: Review of Pipelining and parallel processing for FIR filters, algorithmic strength reduction-introduction, parallel FIR filters, Discrete Cosine Transform and inverse DCT 7 15 MODULE 2: Discrete time cosine transform – implementation of DCT and inverse DCTbased on algorithm-architecture transformations – parallel architectures for rank order filters. 7 15 MODULE 3: Pipelining in IIR filters – parallel processing for IIR filters – combined pipelining and parallel processing of IIR filters. 7 15 MODULE 4: Low power IIR filter design, Pipelined adaptive digital filters- risxed look ahead- product, sum and delay look ahead 7 15 MODULE 5: Scaling and round off noise - Round off noise in pipelined IIR filters – round off noise in lattice filters, pipelining of lattice IIR digital filters – low power CMOS lattice IIR filters 7 20 MODULE 6 : Evolution of programmable DSP processors – DSP processors for mobile and wireless communications, processors for multimedia signal processing – FPGA implementation of DSP processors 7 20	04 EC 7203	VLSI Structures For DSP	3-0-(0:3		
MODULE 1: Review of Pipelining and parallel processing for FIR filters, algorithmic strength reduction-introduction, parallel FIR filters, Discrete Cosine Transform and inverse DCT15MODULE 2: Discrete time cosine transform – implementation of DCT and inverse DCTbased on algorithm-architecture transformations – parallel architectures for rank order filters.715MODULE 3: Pipelining in IIR filters –parallel processing for IIR filters – combined pipelining and parallel processing of IIR filters.715MODULE 4: Low power IIR filter design, Pipelined adaptive digital filters- rlsxed look ahead- product, sum and delay look ahead715MODULE 5: Scaling and round off noise - Round off noise in pipelined IIR filters – low power CMOS lattice IIR filters720MODULE 6 : Evolution of programmable DSP processors – DSP processors for mobile and wireless communications, processors for multimedia signal processing – FPGA implementation of DSP processors720		MODULES				
MODULE 2: Discrete time cosine transform – implementation of DCT and inverse DCTbased on algorithm-architecture transformations – parallel architectures for rank order filters.715INTERNAL TEST 1 (MODULE 1 & 2)MODULE 3: Pipelining in IIR filters –parallel processing for IIR filters – combined pipelining and parallel processing of IIR filters.715MODULE 4: Low power IIR filter design, Pipelined adaptive digital filters- rlsxed look ahead- product, sum and delay look ahead715MODULE 5: Scaling and round off noise - Round off noise in pipelined IIR filters – round off noise in lattice filters, pipelining of lattice IIR digital filters – low power CMOS lattice IIR filters720MODULE 6 : Evolution of programmable DSP processors – DSP processors for mobile and wireless communications, processors for multimedia signal processing – FPGA implementation of DSP processors720	MODULE 1: Realgorithmic streng Transform and inv	eview of Pipelining and parallel processing for FIR filters, gth reduction-introduction, parallel FIR filters, Discrete Cosine verse DCT	7	15		
INTERNAL TEST 1 (MODULE 1 & 2) MODULE 3: Pipelining in IIR filters –parallel processing for IIR filters – combined pipelining and parallel processing of IIR filters. 7 15 MODULE 4: Low power IIR filter design, Pipelined adaptive digital filters- rlsxed look ahead- product, sum and delay look ahead 7 15 MODULE 5: Scaling and round off noise - Round off noise in pipelined IIR filters – round off noise in lattice filters, pipelining of lattice IIR digital filters – low power 7 20 MODULE 6 : Evolution of programmable DSP processors – DSP processors for mobile and wireless communications, processors for multimedia signal processing – FPGA implementation of DSP processors 7 20	MODULE 2: Discr DCTbased on algo rank order filters.	MODULE 2: Discrete time cosine transform – implementation of DCT and inverse DCTbased on algorithm-architecture transformations – parallel architectures for rank order filters.				
MODULE 3: Pipelining in IIR filters –parallel processing for IIR filters – combined pipelining and parallel processing of IIR filters. 7 15 MODULE 4: Low power IIR filter design, Pipelined adaptive digital filters- rlsxed look ahead- product, sum and delay look ahead 7 15 MODULE 5: Scaling and round off noise - Round off noise in pipelined IIR filters – round off noise in lattice filters, pipelining of lattice IIR digital filters – low power CMOS lattice IIR filters 7 20 MODULE 6 : Evolution of programmable DSP processors – DSP processors for mobile and wireless communications, processors for multimedia signal processing – FPGA implementation of DSP processors 7 20		INTERNAL TEST 1 (MODULE 1 & 2)				
MODULE 4: Low power IIR filter design, Pipelined adaptive digital filters- rlsxed look ahead- product, sum and delay look ahead715INTERNAL TEST 2 (MODULE 3 & 4)MODULE 5: Scaling and round off noise - Round off noise in pipelined IIR filters – round off noise in lattice filters, pipelining of lattice IIR digital filters – low power CMOS lattice IIR filters720MODULE 6 : Evolution of programmable DSP processors – DSP processors for mobile and wireless communications, processors for moses for multimedia signal processing – FPGA implementation of DSP processors720	MODULE 3: Pipel pipelining and par	lining in IIR filters –parallel processing for IIR filters – combined rallel processing of IIR filters.	7	15		
INTERNAL TEST 2 (MODULE 3 & 4) MODULE 5: Scaling and round off noise - Round off noise in pipelined IIR filters – round off noise in lattice filters, pipelining of lattice IIR digital filters – low power CMOS lattice IIR filters 7 20 MODULE 6 : Evolution of programmable DSP processors – DSP processors for mobile and wireless communications, processors for multimedia signal processing – FPGA implementation of DSP processors 7 20	MODULE 4: Low look ahead- produ	7	15			
MODULE 5: Scaling and round off noise - Round off noise in pipelined IIR filters - round off noise in lattice filters, pipelining of lattice IIR digital filters - low power CMOS lattice IIR filters720MODULE 6 : Evolution of programmable DSP processors - DSP processors for mobile and wireless communications, processors for multimedia signal processing - FPGA implementation of DSP processors720		INTERNAL TEST 2 (MODULE 3 & 4)				
MODULE 6 : Evolution of programmable DSP processors – DSP processors for mobile and wireless communications, processors for multimedia signal processing – FPGA implementation of DSP processors	MODULE 5: Scaling and round off noise - Round off noise in pipelined IIR filters – round off noise in lattice filters, pipelining of lattice IIR digital filters – low power CMOS lattice IIR filters			20		
	MODULE 6 : Evo mobile and win processing – FPGA	lution of programmable DSP processors – DSP processors for reless communications, processors for multimedia signal A implementation of DSP processors	7	20		

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 7205	ADVANCED DIGITAL SYSTEM DESIGN TECHNIQUES	3 -0-0: 3	2015

Course Objectives:

- To provide an insight into hazards in combinational circuits
- To understand design and analysis of synchronous and asynchronous state machines
- To understand ASM and its design

Syllabus

Propagation delay and timing defects in combinational logic - hazards types and characteristics -Synchronous state machine design and analysis - output race glitches, detection and elimination of static hazards in the output logic, asynchronous inputs - clock skew, clock sources and clock signal specifications – FSM – design of controller, data path and functional partition. - Asynchronous state machine design and analysis - LPD model - Rendezvous modules - timing defects in asynchronous FSMs-Design using Algorithmic State Machines (ASM) chart

Course Outcome:

Students finishing this course will have the ability

- To analyse timing hazards
- To design and analyse synchronous and asynchronous state machines
- To design systems using ASM

Text books

- 1. R. F. Tinder, "Engineering Digital Design", Academic Press, 2001.
- J. P. Deschamps, G. J. A. Bioul, G. D., "Sutter Synthesis of Arithmetic Circuits FPGA, ASIC & Embedded Systems", Wiley, 2006

- 1. W. I. Fletcher, "An Engineering Approach to Digital Design", PHI, 1996.
- 2. N. N. Biswas, "Logic Design Theory", PHI, 1993.
- 3. J. E. Palmer, D. E. Perlman, "Introduction to Digital Systems", TMH, 1996.

COURSE CODE:	COURSE TITLE	CRED	ITS	
04 EC 7205	Advanced Digital System Design Techniques	3-0-	0:3	
	MODULES			
MODULE 1: Haza and dynamic haza	ards – static and dynamic, essential hazards, static hazard free rd free combinational logic circuits design, functional hazards	8	15	
MODULE 2: Dire interpolation filt architectures	ect digital synthesizers, CORDIC algorithm, Pulse shaping and receiver, DDS with tunable DSM, Transmitter and receiver	6	15	
	INTERNAL TEST 1 (MODULE 1 & 2)			
MODULE 3: Desig triggered flip-flop output race glitch logic	n of simple synchronous state machine design with edge- , analysis of simple state machine, detection and elimination of es, detection and elimination of static hazards in the output	7	15	
MODULE 4: Asynchronous inputs: rules and caveats, clock skew, clock sources and clock signal specifications, initialization and reset of the FSM: sanity circuits, design of complex state machines, algorithmic state machine charts and state tables, array algebraic approach to logic design, state minimization, system-level design: controller, data path and functional partition			15	
	INTERNAL TEST 2 (MODULE 3 & 4)			
MODULE 5: Lur relationships and K maps and state the LPD model, de flop.	nped path delay models for asynchronous FSMs, functional stability criteria, excitation table for LPD model, state diagram, table for asynchronous FSMs, Design of the basic cells by using esign of the Rendezvous modules, RET D flip-flop, RET JK flip-	7	20	
MODULE 6:Dete FSMs,single-trans design of fundar machines, Desigr machines using Al	ction and elimination of timing defects in asynchronous ition-timemachines and array algebraic approach, hazard-free mental mode FSMs, One-hot design of asynchronous state and analysis of fundamental mode FSMs, Design of state gorithmic State Machines (ASM) chart as a design tool.	7	20	
	END SEMESTER EXAM			

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 7207	PATTERN RECOGNITION	3 -0-0: 3	2015

Objective:

• To develop a good understandingof the various pattern recognition techniques and its applications

Syllabus

Introduction- features, feature vectors and classifiers, Supervised versus unsupervised pattern recognition. Classifiers, Estimation of unknown probability density functions - Gaussian mixture models - pattern classification problems –back propagation algorithm, Radial basis function networks - Non-Linear classifiers - Support Vector machines-Clustering - analysis, algorithms.

Course Outcome:

Students finishing this course will have the ability

- To understand feature vectors and classifiers
- To design and analysepattern classification problems

Text books

- 1. Richard O. Duda, Hart P. E., David G. Stork, "Pattern classification", 2/e, John Wiley & Sons Inc., 2001
- 2. Christopher M Bishop, "Pattern Recognition and Machine Learning", Springer 2007.

- 1. SergiosTheodoridis, KonstantinosKoutroumbas, "Pattern Recognition", Academic Press, 2006.
- Earl Gose, Richard Johnsonbaugh, Steve Jost, "Pattern Recognition and Image Analysis", PHI Pvt. Ltd., NewDelhi-1, 1999.
- 3. Fu K. S., "Syntactic Pattern Recognition and Applications", Prentice Hall, Eaglewood Cliffs, N.J,
- 4. Andrew R. Webb, "Statistical Pattern Recognition", John Wiley & Sons, 2002.
- 5. Christopher M Bishop, "Pattern Recognition and Machine Learning", Springer 2007.

COURSE CODE:	COURSE TITLE	CRED	DITS
04 EC 7207	Pattern Recoginition	3 -0-	0: 3
	MODULES	Contact Hours	Sem. Exam Marks (%)
MODULE 1: Fo unsupervised pat introduction, disc	eatures, feature vectors and classifiers, Supervised versus tern recognition. Classifiers based on Bayes' Decision theory- riminant functions and decision surfaces	8	15
MODULE 2: Ba unknown probak classifiers, Linea perceptron algori	6	15	
	INTERNAL TEST 1 (MODULE 1 & 2)		
MODULE 3: Gaus classification prob networks, back pr	sian mixture models, expectation maximization, pattern plems – linear and nonlinearmultilayer feed forward neural ropagation algorithm, Radial basis function networks.	7	15
MODULE 4: Support Vector machines-nonlinear case, decision trees, combining classifiers, feature selection, Receiver Operating Characteristics (ROC) curve			15
	INTERNAL TEST 2 (MODULE 3 & 4)		
MODULE 5: Class separability measures, optimal feature generation, the Bayesian information criterion, dimension reduction technique: PCA, FDA.			20
MODULE 6:Clust sequential algo algorithms, divisiv	7	20	
	END SEMESTER EXAM		

ELECTIVE-V

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 7209	VLSI SUBSYSTEM DESIGN	3 -0-0: 3	2015

Course Objectives:

- To provide an insight into the static and dynamic cmos logic
- To understand and design cmos adders, multipliers and control unit
- To understand Designing of memory and array structures

Syllabus

Static and Dynamic design - Logic efforts -tristate inverter and CMOS logic gates - Layout-examples -Fundamentals of dynamic logic: High performance dynamic circuits-Domino – TSPC - Pass transistor and transmission gate logic –SOI - Data path sub systems – design of adder and shifter - parity generator-ALU design- FSM and PLA based design - design of multipliersDesigning of memory – SRAM - DRAM -Multi-Ported memory -Subarray Architectures - Embedded DRAM - Read-Only Memory: Content-Addressable Memory: Programmable Logic Arrays, Robust Memory Design

Course Outcome:

Students finishing this course will have the ability

- To distinguish between various types of CMOS logic devices
- To design CMOS based datapath and control units
- to analyse various CMOS based memory types

Text books

- 1. Weste and Harris, "Integrated Circuit Design", 4/e, 2011, Pearson Education.
- 2. John P Uyemura, "Introduction to VLSI circuits and systems", John Wiley and Sons, 2012

- 1. Kamran Eshraghian, Douglas A Pucknell, "Essentials of VLSI Circuits and systems", Prentice Hall of India, 2011
- 2. C.Mead and L.Coway, "Introduction to VLSI systems", Addison Wesley, 1999
- 3. Rabaey, <u>Chandrakasan</u> and <u>Nikolic</u>, "Digital Integrated Circuits A Design Perspective", 2/e, Pearson Education.
- 4. S.Srinivasan, "VLSI Circuits", NPTEL Courseware, 2005

COURSE CODE:	COURSE TITLE	CRED	DITS	
04 EC 7209	VLSI Subsystem Design	3 -0-	0: 3	
	MODULES			
MODULE 1: Trist NOR), Logic effort of dynamic logic:	ate inverter, static CMOS logic gates, properties(2 input NAND, s, Combinational logic circuits- Layout-examples; Fundamentals High performance dynamic circuits-Domino CMOS	8	15	
MODULE 2: Mu logic(NORA), Tru transmission gate Body Voltage, SOI	MODULE 2: Multi Output Domino Logic, Dual-rail Domino Logic, NP Domino logic(NORA), <i>True-Single-Phase-Clock</i> (TSPC) CMOS logic; Pass transistor and transmission gate logic, examples. Silicon-On-Insulator Circuit Design: Floating Body Voltage SOLAdvantages Disadvantages			
	INTERNAL TEST 1 (MODULE 1 & 2)			
MODULE 3: Design of adders: bit parallel, bit serial, carry look ahead adder, multi level circuits, carry save and carry skip adders, conditional sum adder, one/zero detector, magnitude comparator, Counters- binary, LFSR; parity generator; Shifters: Funnel shifter, Barrel shifter, Datapath design case study			15	
MODULE 4: ALU design- design of multipliers: parallel multipliers, array, 2's complement, Booth, Braun, Baugh-Wooley, Wallace tree, Dadda multipliers; serial multiplier. Design of control unit: FSM design procedure, PLA based design.			15	
INTERNAL TEST 2 (MODULE 3 & 4)				
MODULE 5: SRA SRAM; DRAM: Sul Only Memory: Pro Shift Registers, Qu	M: SRAM Cells, Row Circuitry, Column Circuitry, Multi-Ported parray Architectures, Column Circuitry, Embedded DRAM; Read- ogrammable ROMs, NAND ROMs; Flash Serial Access Memories: ueues (FIFO, LIFO), Content-Addressable Memory	7	20	
MODULE 6: Prog Error Correcting (memories. Memo	MODULE 6: Programmable Logic Arrays, Robust Memory Design: Redundancy, Error Correcting Codes (ECC), Memory reliability and yield, Power dissipation in memories. Memory design:-case study			
	END SEMESTER EXAM			

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 7211	TESTING OF VLSI CIRCUITS	3 -0-0: 3	2015

Course Objectives:

- To provide an introduction about VLSI testing
- To understand logic simulation and test designs
- To study variousmemory tests

Syllabus

Introduction to VLSI testing process and Test Equipment - Test Economics and Product Quality - Fault Modeling - Logic simulation - serial and parallel fault simulation - Testability Measures, Combinational and Sequential Circuit Test Generation. Design for testability - Built-in Self test - Boundary Scan standard - Memory Test - Analog and Mixed signal Test - delay test - IDDQ Test-System Test - Embedded Core Test - Future Testing.

Course Outcome:

Students finishing this course will have the ability

- To understand various VLSI testing procedures
- to design forfault modeling and logic simulation
- to analyse various types of VLSI testing

Text book

1.V. D. Agarwal, M. L. Bushnell, "Essentials of Electronic Testing of Digital Memory and Mixed Signal VLSI Circuits", Springer, 2000

- 1. L. Cronch, "Design for Test for Digital IC's and Embedded Core system", Prentice Hall, 1999.
- 2. . NirajJha, S. K Gupta, "Testing of Digital Systems", Cambridge University Press, 2003.
- M. Abramovici, M. A. Breuer and A. D. Friedman, "Digital Systems Testing and Testable Design", IEEE Press, 1994.

COURSE CODE: COURSE TITLE			DITS
04 EC 7211	Testing Of VLSI Circuits	3 -0-0: 3	
	MODULES	Contact Hours	Sem. Exam Marks (%)
MODULE 1: VL Product Quality, v	SI testing process and Test Equipment, Test Economics and why fault modeling, Fault Modeling	7	15
MODULE 2: Logic and Fault Simulation, glossary of Faults, single stuck-at-faults, functional equivalence, bridging faults.			15
	INTERNAL TEST 1 (MODULE 1 & 2)		
MODULE 3: Modeling single states, algorithm for true value simulation, serial and parallel fault simulation, Testability Measures, Combinational Circuit Test Generation, Sequential Circuit Test Generation			15
MODULE 4: Digital DFT and Scan design, Built-in Self test, Random logic BIST and memory logic BIST, Boundary Scan standard			15
	INTERNAL TEST 2 (MODULE 3 & 4)		
MODULE 5: Analog and Mixed signal Test, delay test, IDDQ Test, DFT Fundamentals, ATPQ Fundamental			20
MODULE 6: Scan Future Testing.	7	20	

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 7213	ADVANCED DIGITAL	2 0 0 2	2015
	COMMUNICATION	3 -0-0: 3 2015	2015

Objectives:

- To characterize the communication systems
- To learn various digital modulation schemes
- To study optimum receivers for AWGN channel
- To learn communication through bandlimited channels

Syllabus

Communication channels – characteristics and models, Signal space vector space concepts, Gram-Schmidt procedure, Bounds on tail probability, random variablesand process - Digital modulation schemes - Multidimensional – orthogonal –biorthogonalsignaling- PSD - Optimum receivers for AWGN Channels: Waveform and vector AWGN channels - The correlation and matched filter receiver -Communication through Band Limited Channels :-Characterization, Signal design - Design of band limited signals for no ISI and controlled ISI-Partial response signaling, Optimum receiver with ISI & AWGN: - Maximum-Likelihood Sequence Estimation(MLSE) -turbo and adaptive equalization

Course Outcome:

Students finishing this course will have the ability

- to model various types of communication system
- to design transmitters and receivers for communication schemes with different modulation techniques
- to deal with ISI
- to analyse various types of channels and signals

Text book

1. J. Proakis, "Digital Communications", McGraw Hill, 4th Edition, 2007

- 1. Bruce Carlson, Crilly&Rutledge, Communication systems, McGraw Hill
- 2.. B. Sklar, "Digital Communications: Fundamentals and Applications", Prentice Hall.
- 3.. John R. Barry, Edward A. Lee, David G. Messerschmitt, "Digital Communication" Kluwer Academic
- 4.. J. M. Wozencraft, I. M. Jacobs, "Principles of Communication Engineering", John Wiley,
- 5. U. Madhow, "Fundamentals of Digital Communication," Cambridge University Press.

COURSE CODE: COURSE TITLE			CREDITS	
04 EC 7213 Advanced Digital Communication			3-0-0:3	
MODULES			Sem. Exam Marks (%)	
MODULE 1: E communication c communications c	lements of digital communication systems, performance, channels and their characteristics, mathematical models for channels, Representation of band pass and low pass signals	8	15	
MODULE 2: Sign signal space conce theorems for sup process	MODULE 2: Signal space representation of waveforms, vector space concepts, signal space concepts, Gram- Schmidt procedure, Bounds on tail probability, limit theorems for sum of random variables, complex random variables, random process			
	INTERNAL TEST 1 (MODULE 1 & 2)		·	
MODULE 3: modulation meth signaling, FSK, bi CPM, Power spec signal with memo	Representation of digitally modulated signals, memoryless ods: PAM, PSK, QAM, Multidimensional signaling; orthogonal forthogonalsignaling,Signaling schemes with memory: CPFSK, trum of digitally modulated signals: PSD of digitally modulated ry, PSD of CPFSK and CPM	7	15	
MODULE 4: Waveform and vector channel models:optimal detection for a general vector channel, MAP and ML, receiver, decisionregions, errorprobability, sufficient statistics.Waveform and vector AWGN channels, optimal detection for the vector AWGN channel, Implementation of optimum receiver for AWGN channels: The correlation receiver, the matched filter receiver.			15	
INTERNAL TEST 2 (MODULE 3 & 4)				
MODULE 5: Cha limited channels. Design of band lin	racterization of band limited channels, Signal design for band Design of band limited signals for no ISI-The Nyquist criterion, nited signal with controlled ISI-Partial response signaling	7	20	
MODULE 6: Opti receiver, A discre Sequence Estima detectors, turbo e equalizer, recursiv	7	20		
	END SEMESTER EXAM			

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 7113	RECENT TRENDS IN COMMUNICATION ENGINEERING	3 -0-0: 3	2015

Objectives:

• To familiarize with modern trends in communication like software defined radio, cognitive radio, co-operative communication and IOT

Syllabus

Software radio concepts, Design principles - Direct digital synthesizers, CORDIC algorithm, Pulse shaping and interpolation filters -Cognitive Radios and Dynamic Spectrum Access. Analytical Approach and Algorithms Spectrum Sharing, Pricing - Regulatory Issues and International Standards - Cooperative communications, protocols - The Internet Of Things - Definition, design, characteristics and prototyping

Course Outcome:

Students finishing this course will have the ability

- to understand and analyse concepts of software defined radio and cognitive radio
- to make designsbased on Cooperative communication concepts
- to analyseinternet of things

References:

SOFTWARE DEFINED RADIO:

- 1. Paul Burns, Software Defined Radio for 3G, Artech House, 2002.
- 2. Tony J Rouphael, RF and DSP for SDR, Elsevier Newnes Press, 2008.
- 3. JoukoVanakka, Digital Synthesizers and Transmitter for Software Radio, Springer, 2005.
- 4. PKenington, RF and Baseband Techniques for Software Defined Radio, Artech House, 2005.

COGNITIVE RADIO:

1. Kwang-Cheng Chen, Ramjee Prasad, Cognitive Radio Networks, Wiley

COOPERATIVE COMMUNICATIONS:

1. Cooperative Communications and Networking- K. J. Ray Liu, Ahmed K. Sadek, Weifeng Su and Andres Kwasinsk, Cambridge University Press

THE INTERNET OF THINGS:

1. Internet of Things: A Hands-On Approach, Vijay Madisetti, ArshdeepBahga, VPT; 1 edition

2. Adrian McEwen, Hakim Cassimally, Designing the Internet of Things, Wiley; 1 edition

COURSE CODE:	COURSE TITLE	CRED	DITS	
04 EC 7113 Recent Trends in Communication Engineering			3-0-0:3	
	MODULES	Contact Hours	Sem. Exam Marks (%)	
MODULE 1: Sof topologies, Noise	tware radio concepts, Design principles, Receiver front end and Distortion in RF chain, Object oriented software radios	8	15	
MODULE 2: Direct digital synthesizers, CORDIC algorithm, Pulse shaping and interpolation filters, DDS with tunable DSM, Transmitter and receiver architectures			15	
	INTERNAL TEST 1 (MODULE 1 & 2)			
MODULE 3: 0 Approach and Alg Cognitive Radios, Spectrum Sensing	Cognitive Radios and Dynamic Spectrum Access, .Analytical gorithms for Dynamic Spectrum Access. Fundamental Limits of .Mathematical Models toward Networking Cognitive Radios. to Detect Specific Primary System	7	15	
MODULE 4: Spect for Cognitive M Mobility Manage and International	7	15		
	INTERNAL TEST 2 (MODULE 3 & 4)			
MODULE 5: Cooperative communications, Cooperation protocols, Cooperative communications with single relay-System model, Distributed space-time coding (DSTC), Distributed space-frequency coding (DSFC), Differential modulation for cooperative communications-Differential modulation, Energy efficiency in cooperative sensor networks- System model, Cognitive multiple access via cooperation- System model, Cooperative cognitive multiple access (CCMA) protocols			20	
MODULE 6: The Internet of Things: An Overview, Definition and characteristics, Physical Design of IOT, Things in IOT, IOT PROTOCOLS,Logical Design of IOT,IOT Functional blocks,IOT Communication Models, IOT Communication APIs, IOT Enabling Technologies, Design Principles for Connected Devices, Internet Principles, Thinking About Prototyping			20	
	END SEMESTER EXAM			

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 7291	SEMINAR	0 -0-2: 2	2015

Students have to register for the seminar and select a topic in consultation with any faculty member offering courses for the programme. He / She shall choose the topic based on the references from international journals of repute, preferably IEEE journals. A detailed write-up on the topic of the seminar is to be prepared in the prescribed format given by the Department. The seminar shall be of 30 minutes duration and a committee with the Head of the department as the chairman and two faculty members from the department as members shall evaluate the seminar based on the coverage of the topic, presentation and ability to answer the questions put forward by the committee.

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 7293	PROJECT PHASE I	0 -0-12: 6	2015

Project work is to be carried out in the third and fourth semesters. Project work is to be evaluated both in the third and the fourth semesters. Based on these evaluations the grade is finalised in the fourth semester.

In Master's Project Phase-I, the students are expected to select an emerging research area in the field of specialization. After conducting a detailed literature survey, they should compare and analyze research work done and review recent developments in the area and prepare an initial design of the work to be carried out as Master's Project. It is mandatory that the students should refer National and International Journals and conference proceedings while selecting a topic for their Project. He/She should select a recent topic from a reputed International Journal, preferably IEEE/ACM. Emphasis should be given for introduction to the topic, literature survey, and scope of the proposed work along with some preliminary work carried out on the Project topic.

Project evaluation weights shall be as follows:-

Total marks for the Project: 150

In the 3rd Semester:- Marks:50

Project Progress evaluation:

Progress evaluation by the Project Supervisor : 20 Marks

Presentation and evaluation by the committee : 30 Marks

Students should submit a copy of Phase-I Project report covering the content discussed above and highlighting the features of work to be carried out in Phase-II of the Project. The candidate should present the current status of the Project work and the assessment will be made on the basis of the work and the presentation, by a panel of internal examiners in which one will be the internal guide. The examiners should give their suggestions in writing to the students so that it should be incorporated in the Phase–II of the Project.

SEMESTER IV

COURSE CODE	COURSE NAME	L-T-P:C	YEAR
04 EC 7294	PROJECT PHASE II	0 -0-21: 12	2015

In the fourth semester, the student has to continue the project work and after successfully finishing the work, he / she has to submit a detailed bounded Project report. The work carried out should lead to a publication in a National / International Conference or Journal. The papers received acceptance before the M.Tech evaluation will carry specific weightage.

TOTAL MARKS :100	
Project evaluation by the supervisor/s	: 30 Marks
Evaluation by the External expert	: 30 Marks
Presentation & evaluation by the Committee	: 40 Marks