

Rajiv Gandhi Institute of Technology

(Govt. Engineering College ,Kottayam)

CAN APPLY Degree (B. Tech or BE) in Mechanical / Automobile

/Production / Production cum Plant/ Industrial / Automobile /Production / Production cum Plant/ Industrial / Mechan ical stream Automobile / Mechanical stream Production / Electrical & Electronics / Mechatronics Engineering

Department of Mechanical Engineering

M. Tech Engineering Design

Ø

Course Highlights

The Curriculum includes Courses like Product Design, FEM. CFD, Optimistaion, Electric and Hybrid Vehicle Design, Control System and Vehicle Dynamics, Product Design and Product Testing Lab Sessions

Lab Facilities

Fab Lab Product Design Lab Ergonomics Lab CAD Lab Advanced Machine Tool Lab Dynamics Lab

Software Available

Catia VS., Anays, Hyperworks, Solid Works, 3D Experience, Jack, MATLAB

About the course

Engineering Design at RIT is an interdisciplinary course with specific focus on form design and functional design, with domain expertise. The curriculum for the program is designed to ensure that the student gets a well-rounded education to meet the requirements of the industry with emphasis on both domain specialization and skill development. The programme gives special thrust to domains such as electric vehicle design, energy harvesting and thermal management of electronic systems. Our design partners in this thrust area includes Enfost Design Bangalore and Nhanz Systems Bangalore. Along with top class design and development facilities we have a strong design group in RIT consisting of a vibrant multi-disciplinary team of Alumni, Students, Faculty and Staff. The department promotes practice based learning, and works with their students to take live industrial problems as mini projects and main projects. Internship is made mandatory to develop student's core competencies to understand the real-life engineering problems and their solution strategies. The Design team has helped to shape the careers of engineering graduates in elite organizations such as Enfost Design, Nhanz Systems, V-Guard, Mercedes-Benz, Tata Advanced Materials, etc. Experience the joy of design with us...

Faculty

with 15+ years of Experience

Industry Tie-Ups

- 1. MoU with Enfost Design, Bangalore
- 2. Nhanz Systems Pvt itd, Bangalore
- 3. RUBCO Pampady
- 4. TryCAE Industrial Engineering Pvt Ltd,Trichy
 - hod.me@rit.ac.in 🛛
 - 9447422303, 9446332031 🕻
 - Pampady, Kottayam 🏠

WWW.RIT.AC.IN

APJ Abdul Kalam Technological University

Cluster 4: Kottayam

M. Tech Program in Mechanical Engineering

(Engineering Design)

Scheme of Instruction and Syllabus: 2020 Admissions

Compiled By Rajiv Gandhi Institute of Technology, Kottayam November 2020

SCHEME AND SYLLABI FOR M.TECH DEGREE WITH SPECIALIZATION IN ENGINEERING DESIGN

Credit requirements : 67 credits (22+19+14+12)

Normal Duration : Regular: 4 semesters; External Registration: 6 semesters; Maximum duration : Regular: 6 semesters; External Registration: 7 semesters. Courses: Core Courses: Either 4 or 3 credit courses; Elective courses: All of 3 credits

ELIGIBILITY: B.Tech/B.E in Mechanical/Automobile/Production/Production cum Plant/Industrial/Mechanical stream Automobile/Electrical and Electronics/Mechatronics Engineering with 60 % Marks.

Allotment of credits and examination scheme: -

Semester 1: (Credits: 22)

SEMESTER-I

Exam Slot	Course Code:	Name		Internal Marks		End Sem. Exam	
			L- T - P		Marks	hrs	Credits (22)
А	04 ME 6601	Applied Mathematics for Engineering	3-0-0	40	60	3	3
В	04 ME 6603	Vibration Analysis & Control	3-1-0	40	60	3	4
С	04 ME 6605	Advanced Mechanics of Solids	3-1-0	40	60	3	3
D	04 ME 6607	Product Design & Development	3-0-0	40	60	3	4
Е	04 ME 66XX	Elective1	3-0-0	40	60	3	3
	04 GN 6001	Research Methodology	1-1-0	100	0	0	2
	04 ME 6691	Seminar-I	0-0-2	100	0	0	2
	04 ME 6693	Product Design Lab	0-0-2	100	0	0	1
		Total	23				22

SEMESTER-II

Α	04 ME 6602	Finite Element Method	3-1-0	40	60	3	4
В	04 ME 6604	Modeling and Control of Engineering Systems	3-0-0	40	60	3	3
С	04 ME 6606	Design for Manufacturing and Assembly	3-0-0	40	60	3	3
D	04 ME 66XX	Elective 2	3-0-0	40	60	3	3
Е	04 ME 66XX	Elective 3	3-0-0	40	60	3	3
	04 ME 6692	Mini Project	0-0-4	100	0	0	2
	04 ME 6694	Product Analysis and Testing Lab	0-0-2	100	0	0	1
		Total	21				19

SUMMER BREAK

Exam	Course No:	Name	Name L-T-P	L- T - P	Internal Marks	End So Exai	em. n	Credits
Slot				IVIALKS	Marks	hrs	(0)	
	04 ME 7690	Industrial Training	0-0-4				Pass/ Fail	

SEMESTER-III

Exam	Course No:	Name	L- T - P	Internal Marks	End Sem. Exam		Credits
5101				WIAIKS	Marks	hrs	(14)
А	04ME 764X	Elective 4	3-0-0	40	60	3	3
В	04ME 765X	Elective 5	3-0-0	40	60	3	3
	04 ME 7691	Seminar-II	0-0-2	100	0	0	2
	04 ME 7693	Project (Phase I)	0-0-12	50	0	0	6
		Total	20				14

SEMESTER-IV

Exam Slot	Course No:	Name	L- T - P	Internal Marks	External Evaluation Marks	Credits (12)
	04 ME 7694	Project (Phase II)	0-0-21	70	30	12

ELECTIVE LIST

ELECTIVE GROUP	Course No:	Name		
	04 ME 6609	Mechatronics in Manufacturing Systems		
1	04 ME 6611	Design of Hydraulic and Pneumatic Systems		
1	04 ME 6613	Engineering Optimization		
	04 ME 6615	Bearing Design and Rotor Dynamics		
	04 ME 6608	Design and Analysis of Energy Systems		
2	04 ME 6612	Design Automation with IoT		
2	04 ME 6614	Advanced Fluid Mechanics and Heat transfer		
	04 ME 6616	Measurement & Instrumentation Engineering		
	04 ME 6618	Mechanical Behavior of Materials		
2	04 ME 6620	Experimental Stress Analysis		
5	04 ME 6622	Engineering Fracture mechanics		
	04 ME 6624	Composite Materials and Mechanics		
	04 ME 7601	Micro-Electro Mechanical Systems		
4	04 ME 7603	Computational Fluid Mechanics		
4	04 ME 7605	Vehicle Dynamics		
	04 ME 7607	Design of Material Handling Equipment		
	04 ME 7609	Rapid Prototyping and Tooling		
	04 ME 7611	Electric and Hybrid vehicles		
5	04 ME 7613	Modal Analysis of Mechanical Systems		
	04 ME 7615	Industrial Robotics and Expert Systems		

SEMESTER I

04 ME 6601-Syllabus

Course No.	Course Name	L-T-P	Credits	Year of Introduction				
04 ME 6601	Applied Mathematics for	3-0-0	3	2020				
	Engineering Design							
Prerequisite:	Under-graduate courses of Mathema	atics						
Course Object	ives: The main objectives of this cou	rse are						
1. To gain know	wledge about different types of Part	tial Differen	tial Equation	ns				
3. To understan	nd the basics of calculus of variation	n						
4. To learn the	concepts of Fast Fourier Transform	1.						
Syllabus:								
Computational	methods in engineering, Bounda	ary value p	oroblems for	ODE – Finite difference				
methods – Nur	nerical solution of PDE. Tensor an	alvsis. Sum	mation conv	ention – Contra variant and				
covariant vecto	ors. Calculus of variation. Variation	and its pro	perties – Ei	iler's equation – functionals				
dependent on f	irst and higher order derivatives Fa	st Fourier 7	Fransform V	Variation and its properties –				
Euler's equation	n = functionals dependent on first a	nd higher o	rder derivati	ves				
Euler's equato	ome . The student will be able to			VC5				
1 Unders	tand various numerical methods to	olvo hound	lory voluo pr	oblame involving				
1. Unders	E and DDE compare the officiane	solve bound	nt mathada	oblems moorving				
	JE and PDE, compare the efficiency	y of differen	if inethous.					
2. Express	tensors using summation convention	on and class	silication of	these, learn				
tensor a	ligebra and calculus.		1 77					
3. Solve p	roblems with moving boundaries us	sing Ritz an	d Kantrovic	h methods				
4. Unders	and the computational algorithms t	hat are used	to transform	n a signal to its				
discrete	Fourier transform (DFT) and meas	sure the con	nputational e	efficiency of such				
algorith	ms.							
Text Books:								
1. Grewal	B.S., Higher Engineering Mathemat	tics, 40th edi	ition, Khanna	a Publishers, 2007.				
References:			2.1.1.1.1					
1. James,	J., Advanced Modern Engineering N	lathematics,	3rd edition,	PearsonEducation,2004.				
2. Grewal	B.S., Numerical methods in Engin	leering and	Science, /th	edition, Khanna Publishers,				
2005.		1' (' D						
3. Gupta,	A.S., Calculus of variations with appl	lications, Pro	entice-Hall o	f India, New Delhi, 1997.				
4. O'Neil,	P.V., Advanced Engineering Mathem	natics, Thon	ison Asia Pv	t. Ltd., Singapore, 2003.				
5. Andrew	s, L.C. and Philips, R. L. Mathemati	ical Techniq	ues for Engli	neers and Scientists, Prentice				
Hall of India, 2006.								

COURSE PLAN				
MODULES	Contact	Sem. Exam		
	hours	Marks;(%)		
Module 1				
Computational methods in Engineering: Boundary value problems for	7	0(15)		
ODE – Finite difference methods – Numerical solution of PDE –	/	9(13)		
Solution of Laplace's and Poisson equation.				
Module 2				
Liebmann's iteration process– Solution of heat conduction equation by	7	0 (15)		
Schmidt explicit formula and Crank-Nicolson implicit scheme -	/	9(13)		
Solution of wave equation				
FIRST INTERNAL TEST				
Module 3				
Tensor Analysis: Summation convention – Contra variant and covariant				
vectors – contraction of tensors– inner product – quotient law – metric	7	9 (15)		
tensor - Christoffel symbols - covariant differentiation - gradient,				
divergence and curl				
Module 4				
Calculus of variation: Variation and its properties – Euler's equation –	7	9 (15)		
functionals dependent on first and higher order derivatives				
SECOND INTERNAL TEST				
Module 5				
functionals dependent on functions of several independent variables -	7	12 (20)		
problems with moving boundaries - direct methods - Ritz and	/	12 (20)		
Kantorovich methods.				
Module 6				
Fast Fourier Transform: Variation and its properties – Euler's equation –				
functionals dependent on first and higher order derivatives sampled	7	12 (20)		
Fourier series – Approximation of Fourier transform by an N-point DFT				
- Computational efficiency of FFT				

04 ME 6603 – Syllabus

Course No.	Course Name	L-T-P	Credits	Year of Introduction			
04 ME 6603	Vibration Analysis and Control	3-1-0	4	2020			
Prerequisite: U	Inder-graduate courses in Mathematics	s and basic Physic	cs	<u> </u>			
Course Objectiv	ves: The main objectives of this course a	are					
1. To form	nulate a vibratory model of a physical	situation and clas	sify it.				
2. To lear	n to apply various vibrational control	methods.					
3. To be a	ware of the experimental methods in v	vibration analysis	•				
Syllabus:			•. •				
Sources of V	ibration-Mathematical Models- Dis	splacement, velo	city and A	Acceleration-Free			
Vibration of U	ndamped and Damped- Forced Vibra	ation with Harmo	onic Excitation	on System-Multi			
Degree Freedo	m System –Influence Coefficients a	and stiffness coe	fficients-Tra	nsient vibrations			
Continuous sys	tems Specification of Vibration Limi	ts -Vibration sev	verity standar	rds- Vibration as			
condition Moni	Itoring Tool-Vibration Analysis Ove	erview - Experin	nental Metho	ods in Vibration			
Analysis.	· · · · · · · · · · · · · · · · · · ·						
Expected outco	me: The student will be able to						
I. Formula	te a mathematical model for a vibrator	ry system					
2. Analyse	the vibratory model of m. d. o. f syste	ems.					
3. Device v	ibration control procedures for simple	e systems.					
4. Describe	e the experimental methods in vibratio	n analysis.					
1 Page S S	"Machanical Vibrations" Addison	Waslay Longmon	1005				
$\begin{array}{c} 1. \text{Ka0}, 5.5 \\ 2 \text{Thomson} \end{array}$	n W.T. "Theory of Vibration with A	westey Longman	, 1995. S Dublishers	and Distributors			
2. Thomson New De	$H_{\rm r}$ w.1. – Theory of vibration with $P_{\rm r}$	Applications, CD		and Distributors,			
References	ini, 1990.						
Kerer ences.							
1. Ramamı	arti. V, "Mechanical Vibration Practice	e with Basic Theo	ory", Narosa,	New Delhi,			
2000.	2000.						
2. S. Graha	ım Kelly & Shashidar K. Kudari, "Me	chanical Vibration	ns", Tata Mc	Graw–Hill			
Publishing Com. Ltd New Delhi,2007.							
3. Grover G K," Mechanical Vibrations", Nem Chand and Bros,2009							
	COURSE	PLAN					
	MODUL FS		Contact	Som Evom			

MODULES		Sem. Exam
	hours	Marks; (%)
Module 1		
Introduction -Sources of Vibration-Mathematical Models- Review of		
Single Degree Freedom Systems - Types of damping and damping		
materials Free and forced vibrations, rotating unbalance, base	10	9 (15)
excitation.		

Module 2		
Two degree of freedom systems-Normal mode vibration-Principal co-		
ordinates-Coordinate coupling. Multi Degree Freedom System -	9	9 (15)
Influence Coefficients and stiffness coefficients-Flexibility Matrix and		
Stiffness Matrix – Eigen Values and Eigen Vectors		
FIRST INTERNAL TEST		
Module 3		
Multi degree of freedom systems -Numerical Methods -Dunkerley,	0	0 (15)
Rayleigh's, Matrix Iteration Method -Introduction to Continuous	9	9(13)
System: Vibration of String, Shafts and Beams		
Module 4		
Critical speeds of shafts -whirling of shafts, Response to Arbitrary and	0	0 (15)
non- harmonic excitations - Transient Vibration -Impulse loads	9	9(15)
Transient vibrations Introduction to Nonlinear Vibrations		
SECOND INTERNAL TEST		
Module 5		
Vibration control: Specification of Vibration Limits –Vibration severity		
standards- Vibration as condition Monitoring tool-Vibration Isolation		
methodsDynamic Vibration Absorber, Torsional and Pendulum Type	10	12 (20)
Absorber- Damped Vibration absorbers-Static and Dynamic Balancing-		
Balancing machines-Field balancing - Vibration Control by Design		
Modification Active Vibration Control.		
Module 6		
Experimental Methods in Vibration AnalysisVibration Measuring		
Instruments - Selection of Sensors- Accelerometer Mountings		
Vibration Exciters-Mechanical, Hydraulic, Electromagnetic and	9	12 (20)
Electrodynamics -Frequency Measuring Instruments System		
Identification from Frequency Response -Testing for resonance and		
mode shapes.		

04 ME 6605 – Syllabus

Course No.	Course Name	L-T-P	Credits	Year of Introduction				
04 ME 6605	Advanced Mechanics of Solids	3-1-0	3	2020				
Prerequisite: Under-graduate courses in Engineering Mechanics								
Course Objecti	ives: The main objectives of this cou	rse are						
1. To form	1. To formulate analytical solution for the stress-strain for a general geometry.							
2. To learn	the basics of a contact stress prob	lem.						
3. To intro	duce the concepts of plasticity.			-				
Syllabus:								
Introduction to	Three-Dimensional Theory of Ela	sticity,2-D	problem Pla	ane stress, Plane strain and				
axi-symmetric	problem, Methods of solving 2-D	problems S	hear stress d	istribution and Shear centre				
for thin walled	open sections, shear centre, torsi	on of prisn	natic shaft, t	heories of failure, and their				
Applications, E	nergy Methods and theorem.							
Expected outco	ome: The student will be able to							
1. Solve p	lane stress problems and axi-symm	etric proble	ems					
2. Comput	te shear stress distribution in sectio	ns and locat	te the shear c	centre				
3. Solve to	orsion problems in prismatic shafts	and thin wa	alled structur	es				
4. Apply t	heories of failure according to situa	ations						
5. Apply e	energy methods for calculating defl	ections						
Text Books:								
1. S. Timoshe	enko & J.W. Goodier, "Theory of E	lasticity", N	McGraw Hill	, 2007.				
References :								
1. Den Hartog	, "Advanced Strength of Materials"	", McGraw	Hill, 1952.					
2. Seely and Smith, "Advanced Mechanics of Materials", John Wiley, 1952.								
3. Filonenko &	& Borodic, "Theory of Elasticity", 1	Foreign Lar	nguages Publ	lishing House, 1965.				
4. Fluggue. W	, "Handbook of Engineering Mech	anics ["] , Mc	Graw Hill, 19	962.				

5. L S Sreenath," Advanced Mechanics of Solids", McGraw Hill, 2010 COURSE PLAN

COURSETLAN				
MODULES	Contact	Sem. Exam		
	hours	Marks (%)		
Module 1 Introduction to Three-Dimensional Theory of Elasticity: Plane stress, Plane strain problems and axi symmetric problems, differential Equations of equilibrium, strain-displacement relations in cartesian and polar co-ordinates, Boundary conditions, Compatibility conditions	10	9 (15)		
Module 2 Airy's Stress function, Biharmonic equation, Saint Venant's principle, applications to Polynomials in rectangular coordinates - cantilever with point load at free end.	9	9 (15)		

FIRST INTERNAL TEST		
Module 3		
Stress distribution in thick cylinder, shrink fitting, rotating disc,		
Solid disc and disc with a central hole. Stress concentration	10	9 (15)
problem, Shear centre: Shear stress distribution and Shear centre for		
thin walled open sections. Computation of shear centre		
Module 4		
Torsion of prismatic shafts, Warping, Stress function method -	0	9 (15)
Membrane analogy, Torsion of bars with elliptical, square and	7	9(13)
rectangular cross section.		
SECOND INTERNAL TEST		
Module 5		
Theories of Failure, and their Applications, Griffith Theory of	0	12 (20)
Brittle Fracture. Application of Griffith theory. Bending of curved	9	12 (20)
beam		
Module 6		
Energy Methods –Strain energy of linear elastic deformation Energy	0	12 (20)
Theorems, Principal of virtual work. Use of energy theories for	9	12 (20)
calculating deflections, twists		

04 ME 6607 - Syllabus

Course No.	Course Name	L-T-P	Credits	Year of Introduction
04 ME 6607	Product Design & Development	3-0-0	4	2020
D	1 1	F · ·		

Prerequisite: An under-graduate course in Design & Engineering

Course Objectives: The main objectives of this course are

- 1. To encourage students to develop environment friendly products for satisfying societal needs.
- 2. To equip with practical knowledge in design and development of new products.
- 3. To familiarize concepts and tools related to product design, development and quality assessment.

Syllabus:

Importance of Engineering design, Steps in Product design, designing for customer needs and satisfaction, designing for societal needs, Creative thinking for product development, Industrial design, Cost evaluation, Design for reliability, Quality aspects of design, use of Quality tools.

Note: Assignment shall preferably be based on a product design and development

Expected outcome: The student will be able to

- 1. Describe the types of design, the design process and the different phases of product development.
- 2. Create product design specifications.
- 3. Do cost evaluation and activity-based costing.
- 4. Apply creative process techniques in synthesizing information, problem-solving and critical thinking
- 5. Incorporate the aspect of reliability in product design

Reference books

- 1. George E. Dieter, Linda C. Schmidt, "Engineering Design", McGraw-Hill International Edition, 4th Edition, 2009, ISBN 978-007-127189-9
- 2. Anita Goyal, Karl T Ulrich, Steven D Eppinger, "Product Design and Development", 4th Edition, 2009, Tata McGraw-Hill Education, ISBN-10-007-14679-9
- 3. Kevin Otto, Kristin Wood, "Product Design", Indian Reprint 2004, Pearson Education, ISBN 9788177588217
- 4. Fundamentals of Quality control and improvement 4th edition, Amitava Mitra, Wiley, 2016.
- Clive L. Dym, Patrick Little, "Engineering Design: A Project-based Introduction", 3rd Edition, John Wiley & Sons, 2009, ISBN 978-0-470-22596-7
- 6. Patrick D. T. O'Connor, "Practical reliability Engineering ", 4 th Edition, 2006, Wiley India Pvt Ltd.

COURSE PLAN			
MODULES	Contact hours	Sem. Exam Marks; (%)	
Module 1 Need for developing products – the importance of engineering design – types of design –the design process – relevance of product life-cycle issues in design –designing to codes and standards- societal considerations in engineering design-generic product development process – various phases of product development-planning for products –establishing markets-market segments- relevance of market research.	7	9 (15)	
Module 2 Identifying customer needs –voice of customer – Concept generation – testing of concepts – customer populations- hierarchy of human needs - need gathering methods – affinity diagrams – needs importance- establishing engineering characteristics-competitive benchmarking- – product design specification.	7	9 (15)	
FIK51 INTERNAL TEST			
Creative thinking –creativity and problem solving- creative thinking methods- generating design concepts-systematic methods for designing – functional decomposition – physical decomposition – functional representation –morphological methods- Decision making – Psychology of colors – Visual balancing	7	9 (15)	
Module 4 Industrial design – human factors design –user friendly design – design for manufacturability - design for serviceability – design for environment – prototyping and testing – cost evaluation –categories of cost –overhead costs – activity-based costing –methods of developing cost estimates – manufacturing cost –value analysis in costing.	7	9 (15)	
SECOND INTERNAL TEST			
Module 5 Design for reliability- basic concept of reliability- failure distributions- MTTF-MTBF-reliability-of-systems-redundancy -derating-maintainability- availability-reliability testing.	6	12 (20)	
Module 6 Quality Aspects of Design -Objectives and functions-Targets- Dimensions of Quality - quality function deployment- house of quality – GD&T - Measures and Matrices-Design of Experiments –design process - Identification of control factors, noise factors, and performance metrics – Quality tools – Case studies.	8	12 (20)	

04 ME 6609 – Syllabus

Course No	Course Name	L-T-P	Credits	Year of Introduction
04 ME 6609	Mechatronics in Manufacturing Systems	3-0-0	3	2020
Prerequisite: Kno	owledge in undergraduate level basics	of electronics a	and mechani	cal engineering.
Course Objective	es: The objectives of the course are			
1. To introdu	ice the integrated field of mechatronics	•		
2. To impart	knowledge about different components	s of a mechatro	onic system.	
3. To familia	rize typical practical common applicat	ion of mechatr	onics.	
Syllabus:				T 1
Introduction to	Mechatronics - Systems- Need f	or Mechatror	incs- Perfor	mance Terminology –
Potentiometers -	LVDT – Capacitance sensors- Actu	ators – Mech	anical - Ele	ctrical - Fluid Power –
Piezoelectric- PLC	. Designing - Possible design solution	is-Traditional a	ind Mechatro	onics design concepts
Expected outcom	ne: At the end of the course, the studen	t will be able to	0	
1. Explain th	e function of basic mechatronics system	ms and compo	nents	
2. Developm	ent of Programmable Logic controller	programming	and impleme	entation of real-life
system		1 0 0	Ĩ	
3. Devise sin	nple mechatronics systems for practica	l applications		
Text Books:				
1. Bolton. W, "N	Mechatronics", Pearson education, sec	ond edition, fif	th Indian Re	print,2003.
2. Smaili. A and	Mrad. F, "Mechatronics integrated tee	chnologies for	intelligent m	nachines", Oxford
university pre	ess, 2008			
References:				
1. Devadas Shett	ty and Richard A. Kolk, "Mechatronics	s systems desig	n", PWS Pu	blishing company, 2007.
2. Godfrey C. Or	nwubolu, "Mechatronics Principles and	l Applications'	', Elsevier, 2	006.
3. Nitaigour Prer	nchand Mahalik, "Mechatronics Princi	ples, Concepts	and Applica	atlions" Tata McGraw-
Hill Publishin	g company Limited, 2003.			
4. Michael B. Hi	stand and Davis G. Alciatore," Introdu	iction to Mecha	atronics and	Measurement systems".
McGraw Hill	International edition, 1999.	··· / 1 +		
5. Bradley D.A,	Dawson. D, Buru N.C and Loader A.J,	Mechatronic	s Nelson II	normes Itd, Eswar press,
6 Lawrence IV	2004. amm "Understanding Flactro Machan	ical Engineerir	na An Inter	oduction to
Mechatronics'	" Prentice Hall of India Pyt I to 2000			
witcenationites	, i tenuce fran of mula i vi Liu, 2000.			

COURSE PLAN			
MODULES	Contact hours	Sem. Exam Marks (%)	
Module 1			
Introduction to Mechatronics - Systems- Need for Mechatronics -	7	0 (15)	
Emerging area of Mechatronics - Classification of Mechatronics -	1	9(15)	
Measurement Systems – Control Systems.			
Module 2			
Sensors and transducers: Introduction - Performance Terminology -			
Potentiometers - LVDT - Capacitance sensors - Strain gauges - Eddy	7	9 (15)	
current sensor - Hall effect sensor - Temperature sensors - Light sensors -			
Selection of sensors - Signal processing.			
FIRST INTERNAL TEST			
Module 3			
Actuators: Mechanical - Electrical - Fluid Power - Piezoelectric - Magneto	7	9 (15)	
strictive- Shape memory alloy - applications - selection of actuators.			
Module 4			
Programmable Logical Controllers: Introduction - Basic structure - Input	7	0 (15)	
and output processing - Programming -Mnemonics- Timers, counters and	/	9(13)	
internal relays - Data handling - Selection of PLC.			
SECOND INTERNAL TEST			
Module 5			
Designing - Possible design solutions-Traditional and Mechatronics design	7	12 (20)	
concepts			
Module 6			
Case studies of Mechatronics systems - Pick and place Robot - Conveyor			
based material handling system - PC based CNC drilling machine - Engine	7	12 (20)	
Management system - Automatic car park barrier - Data acquisition Case			
studies			

04 ME 6611 – Syllabus

Course No.	Course Name	L-T-P	Credits	Year of I	ntroduction
04 ME 6611	Design of Hydraulic and Pneumatic Systems	3-0-0	3		2020
Prerequisite: K	Knowledge in undergraduate level	basics of me	echanical eng	ineering	
Course Object	ives: The objectives of the course	are			
1. To know	v about the basic elements of hydr	aulic and pr	eumatic syste	em.	
2. To do th	ne sizing and system design of type	ical hydrauli	c pneumatic s	systems.	
3. To know	v the maintenance practices of hyc	lro pneumat	ic systems		
Syllabus:					
Hydraulic Powe	er Generators – Selection and sp	ecification of	of pumps, Pre	essure - dire	ection and flow
control valves	- relief valves, Reciprocation, o	quick return	, sequencing	, synchroni	zing circuits -
accumulator cir	rcuits-Pneumatic fundamentals -	control eler	nents, positio	on and pres	sure sensing –
logic circuits, P	neumatic equipment- selection of	components	- design calc	ulations	U
Expected outco	ome: At the end of the course, the	student will	be able to		
1. Describe	e basic elements and functions of	hydraulic an	d pneumatic s	systems	
2. Describe	e the maintenance practices of hyd	lro-pneumat	ic systems	•	
3. Describe	e the maintenance practices of hyd	lro-pneumat	ic systems		
4. Conduct	t system design of hydraulic and p	neumatic sy	stems		
Text Books:					
1. Andrew Par	rr, "Hydraulic and Pneumatics" (H	IB), Jaico Pu	ublishing Hou	ıse, 1999.	
References :		,,	U	,	
1. Antony Esp	ossito, "Fluid Power with Applica	tions", Pren	tice Hall, 198	0.	
2. Dudley, A.	Pease and John J. Pippenger, "Bas	sic fluid pow	ver", Prentice	Hall,1987.	
3. Bolton. W.,	"Pneumatic and Hydraulic System	ns ", Butterv	vorth –Heiner	mann, 1997	
4. K. Shanmug	ga Sundaram, "Hydraulic and Pneu	umatic Cont	rols: Understa	anding made	e Easy" S.
Chand & Co	b Book publishers, New Delhi, 20	06 (Reprint	2009.	e	5
	1	× 1			
	COUDSE	DI AN			
	COURSE			Contact	Sem Exam
	MODULES			hours	Marks (%)
Module 1					
Hydraulic Power G	Generators – Selection and specif	fication of p	oumps, pump	7	9(15)
characteristics. Lin	near and Rotary Actuators –ele	ction, speci	fication and	,) (15)
haracteristics.					
Module 2 Control and regulat	ion alamanta: Prasaura direction	and flow as	ntrol volvos	7	0 (15)
relief valves non-re	elief valves, non-return and safety valves - actuation systems.				
FIRST INTERNAL TEST					
Module 3					
Hydraulic circuits:	Reciprocation, quick return, se	quencing, s	ynchronizing		
circuits - accumula	tor circuits- industrial circuits - j	press circuit	s - hydraulic	7	9 (15)
milling machine - g	rinding, planning, copying, - fork	lift, earth m	over circuits-		
design and selection	n of components – safety and eme	rgency mano	trels.		

Module 4 Pneumatic systems: Pneumatic fundamentals - control elements, position and pressure sensing – logic circuits - switching circuits - fringe conditions modules and these integration	7	9 (15)
SECOND INTERNAL TEST		
Module 5 Circuits: sequential circuits - cascade methods - mapping methods - step counter method, compound circuit design - combination circuit design.	7	12 (20)
Module 6 Selection and sizing: Pneumatic equipment- selection of components - design calculations – application -fault finding - hydro pneumatic circuits - use of microprocessors for sequencing -PLC, Low cost automation - Robotic circuits.	7	12 (20)

04 ME 6613 - Syllabus

Course No.	Course Name	L-T-P	Credits	Year of Introduction	
04 ME 6613	Engineering Optimization	3-0-0	3	2020	
Prerequisite:	Knowledge in undergraduate level	engineering	mathematics	5	
Course Obje	tives: The objectives of the course	are			
1. To int	oduce the concept of optimization	for optimum	engineering	design	
2. To dis	cuss about the formulation and class	sification of	optimization	problems	
3. To ins	til the methods of solving various ty	ypes of optin	nization prob	lems	
Syllabus:					
Statement of e	ingineering optimization problems,	formulation	of optimizat	ion problems, classification	
of optimizatio	n problems and methods of optim	ization, line	ar optimizati	ion problem, unconstrained	
non-linear op	imization problem, constrained no	onlinear opti	mization pro	blems, multi-objective and	
multistage opt	imization problem. Evolutionary al	lgorithms for	r solving opt	imization problems, Design	
of experiment	-based optimization.				
Expected out	come: At the end of the course, the	student will	be able to		
1. Formu	late and classify engineering optimi	ization prob	lems		
2. Solve	linear optimization problems of eng	gineering into	erest.		
3. Under	stand the theory of unconstrained no	onlinear opti	mization pro	blems and to find the	
solutio	n.				
4. Apply	the theoretical background of const	trained nonli	near optimiz	ation to solve constrained	
nonlin	ear optimization problems				
5. Under	stand the methods of solving multi-	objective op	timization pr	oblems	
6. Apply	the knowledge of evolutionary algo	orithms for s	olving engin	eering optimization	
proble	ms.				
Reference boo	oks				
1. S. S.	Rao, Engineering Optimization: 7	Theory and	practice, Ne	w Age international	
publis	publishers, 3 rd edition, 2013.				
2. A. D	Belegunndu and T.R. Chandrup	patla, Optin	nization con	cepts and applications in	
engine	ering, Cambridge university press,	3 rd Edition, 20	19		
3. K. Del 2012.	o., Optimization for Engineering D	esign: Algo	rithms and E	Examples, PHI, 2 nd Edition,	
4. J.S Ar	ora, Introduction to optimum design	n, Academic	Press, 4 th Ed	lition, 2017	

COURSE PLAN			
MODULES	Contact hours	Sem. Exam Marks (%)	
Module 1 Introduction to optimization, Engineering applications of optimization, Statement of an optimization problem- Design vector, Design constraints and constraint functions - Classification of optimization problems, Optimization Methods - Direct and indirect search methods, deterministic and stochastic methods- Maximization and minimization- Local and global optimization-Formulation of optimization problems as mathematical programming problems-Numerical example problems involving design, manufacturing and thermal systems.	6	9 (15)	
Module 2 Linear optimization problems- Simplex method of solving linear optimization problems, Simplex tableau, Artificial variable methods- Two phase and Big-M methods. concept of duality, concept of degeneracy, sensitivity or post optimality analysis, Integer linear programming – Cutting plane method, Branch and bound method	7	9 (15)	
FIRST INTERNAL TEST			
Module 3 Unconstrained nonlinear optimization- Convexity and concavity of functions of single and multi-variables. Mathematical theory of unconstrained optimization, necessary and sufficient conditions. Single variable optimization – direct root methods -Newton-Raphson and secant methods, Elimination methods- Fibonacci and Golden section methods, Multi-variable optimization- Direct search methods - random search methods, pattern search methods-Indirect search methods- Steepest Decent, Newton, Levenberg-Marquardt and conjugate gradient methods.	8	9 (15)	
Module 4 Constrained nonlinear optimization- Mathematical theory of constrained optimization, necessary and sufficient conditions for extrema. Equality Constraints-Lagrange multipliers and Lagrangian optimization, Inequality constraints- Kuhn-Tucker conditions, Direct search methods- random search method and methods of feasible directions. Indirect method- Transformation techniques, Penalty function method.	7	9 (15)	
SECOND INTERNAL TEST			
Multi-objective optimization problem- Concept of Pareto-optimality. Min- Max Pareto solution, Weighted sum approach – Goal programming- Multistage optimization-Dynamic programming.	7	12 (20)	
Module 6 Evolutionary algorithm for optimization- genetic algorithms, simulated annealing, particle swam optimization and ant colony optimization. Neural Network based optimization. Design of experiment-based optimization- Response surface methods-Implementing optimization algorithm using commercial software packages: Matlab/Mathcad/Minitab/design expert.	7	12 (20)	

04 ME 6615 - Syllabus

Course No.	Course Name	L-T-P	Credits	Ye	ear of
04 ME 6615	Bearing Design and Rotor	3-0-0	3	2	2020
	Dynamics				
Prerequisite: Nil	·				
Course Objectives:	The main objectives of this course	e are			
1. To gain know	wledge about different types of bea	rings			
2. To systemati	ically to do the ideal bearing select	ion accordi	ng to the situ	ations	
Syllabus:	my and Davidamy Lythrightian D	anian and		analasia a	f Threat and
Selection criteria-D	bry and Boundary Lubrication, D	esign and	performance	e analysis c	of Inrust and
equation for dynam	ic loadings Rotor vibration and R	otor critica	u suesses, n il speeds- su	pport stiffne	ess on critical
speeds.	ie foadings, Kotor vioration and K		ii speeds su	pport stilling	
Expected outcome:	The student will be able to				
1. Explain diffe	erent types of bearings and applicat	tions			
2. Design and p	performance analysis of Thrust and	Journal be	arings		
3. Compute the	e contact stress in roller bearings		U		
4. Computation	n and measurements of journal bear	ring coeffic	ient		
Text Books:					
1. S. K. Basu, S. I	N. Sengupta & B. B. Ahuja," Funda	amentals of	Tribology",	Prentice-H	all of India
Pvt Ltd , New D	Delhi, 2005.				
References:					
1. Neale, M.J. "Tri	bology Hand Book", Butterworth I	Heinemann,	, United King	gdom 2001.	
2. Cameron, A. "B	asic Lubrication Theory", Ellis He	rward Ltd.,	UK, 1981		
3. Halling, J. (Edite	or) – "Principles of Tribology ", M	acmillian –	1984.		
4. Williams J.A. "I	Engineering Tribology", Oxford Ut	niv. Press, 1	.994.		
5. S.K. Basu, S.N.	Sengupta & B.B. Ahuja," Fundam	entals of Tr	ibology", Pr	entice-Hall	of India Pvt
Ltd , New Delhi	, 2005.				
6. G.W. Stachowia	k & A. W. Batchelor, Engineering	Tribology,	Butterworth	-Heinemanr	n, UK,
2005.Kachanov.	L.M., "Foundations of Theory of	Plasticity",	North-Holla	nd Publishir	ng Co., 1971.
	COURSE	PLAN		~	~ -
	MODULES			Contact	Sem. Exam
				nours	
Module 1					(70)
Selection criteria-D	ory and Boundary Lubrication B	earings-Hyd	drodynamic		
and Hydrostatic bearings- Electro Magnetic Bearings-Dry Bearings-Rolling					
Element bearings- E	Bearings for Precision Applications	-Foil Beari	ngs-Special		
Bearings-Selection	of plain Bearing materials -Meta	allic and N	on-metallic	7	9(15)
bearings.	-			/	7 (13)

Module 2 Design and performance analysis of Thrust and Journal bearings – Full, partial, fixed and pivoted journal bearings design procedure-Minimum film thickness – lubricant flow and delivery – power loss, Heat and temperature distribution calculations	7	9 (15)
FIRST INTERNAL TEST		
Module 3 Design based on Charts & Tables and Experimental Curves-Design of Foil Bearings-Air Bearings- Design of Hydrostatic Bearings-Thrust and Journal bearings- Stiffness consideration - flow regulators and pump design.	7	9 (15)
Module 4 Contact Stresses in Rolling bearings- Centrifugal stresses-Elasto hydrodynamic lubrication- Fatigue life calculations- Bearing operating temperature- Lubrication-Selection of lubricants- Internal clearance – Shaft and housing fitMounting Arrangements-Materials for rolling bearings- Manufacturing methods- Ceramic bearings-Rolling bearing cages-bearing seals selection.	7	9 (15)
SECOND INTERNAL TEST		
Module 5 Hydrodynamic Lubrication equation for dynamic loadings-Squeeze film effects in journal bearings and thrust bearings -Rotating loads, alternating and impulse loads in journal bearings – Journal centre Trajectory- Analysis of short bearings under dynamic conditions- Finite difference solution for dynamic conditions.	7	12 (20)
Module 6 Rotor vibration and Rotor critical speeds- support stiffness on critical speeds- Stiffness and damping coefficients of journal bearings-computation and measurements of journal bearing coefficients -Mechanics of Hydro dynamic Instability- Half frequency whirl and Resonance whip- Design configurations of stable journal bearings.	7	12 (20)

04 GN 6001 – **Syllabus**

0041001	Course Name	L-T-P	Credits	Year of Introduction		
04 GN 6001	Research Methodology	3-0-0	3	2020		
Prerequisite: Nil						
Course Objectives	: The objectives of the course are					
1. To learn the	e basic steps in research	1. 1 1	4 1'			
2. To impart k	nowledge about carrying out samp	nonorta	studies.			
Svllabus:	prepare technical presentation and	Teports				
Introduction to th	e Concepts of Research Methodo	ology. Rese	arch Propos	als. Research Design. Data		
Collection and Ana	alysis, Quantitative Techniques and	d Mathemat	ical Modelir	ng, Report writing		
Exposted outcom	At the and of the course, the stud	dont will bo	abla to			
Lapecieu outcom	mulate and apply research tools or	d toobnique		to the respective response		
1. Choose, for	inulate and apply research tools and	la technique	es appropria	te to the respective research		
method and	d use appropriate someling and de	n / actual w	ork environi	nent		
2. Develop an	d use appropriate sampling and da		n techniques	of the quantative and		
quantitative	domain for executing research we	$\frac{1}{1}$		1.1 1 '		
3. Apply and	interpret the statistical tools / meth	ods in the d	ata analysis	and draw conclusions		
4. Interpret the	e results of the experiments conduc	cted and pre	esent reports			
Text Books:	deleasy Matheda and techniques	C D Voth				
References	buology. Methods and techniques.	C. K. Koula	111.			
1. Research Meth	odology: Pannerselvam					
2. Management R	esearch Methodology: K. N. Krish	inaswami. A	AppaIver and	l M Mathiraian. Pearson		
Education. Del	hi. 2010	, -	-FF J			
3. Research Meth	odology: Raniit Kumar, Pearson E	ducation. D	elhi, 2009.			
4. Hand Book of	Research Methodology: M N Bors	e. SreeNiva	s Publication	ns. Jaipur. 2004		
5. Business Resea	arch Methods: William G Zikmund	1. South - W	Vestern Ltd.	2003		
6. Research Meth	ods in Social Science: P K Majum	dar. Viva B	ooks Pvt Ltd	l. New Delhi, 2005		
7. Analyzing Oua	ntitative Data: Norman Blaikie. SA	AGE Public	ations . Lond	don. 2003		
8. SPSS for Wind	lows: Pearson Education. New Del	hi. 2007Ka	chanov.L.M.	. "Foundations of Theory		
of Plasticity", I	North-Holland Publishing Co., 197	1.		, ,		
	0011		· · · · ·			

MODULES	Contact	Sem. Exam
	hours	Marks (%)
Module 1 Introduction to Research Methodology: Concepts of Research, Meaning and Objectives of Research, Research Process, Types of Research, Type of research: Descriptive vs. Analytical, Applied vs. Fundamental, Quantitative vs. Qualitative, and Conceptual vs. Empirical	5	15

Module 2 Criteria of Good Research Research Problem Selection of a problem		
Techniques involved in definition of a problem, Research Proposals –	5	15
Types, contents, Ethical aspects, IPR issues like patenting, copyrights		
FIRST INTERNAL TEST		
Module 3		
Research Design: Meaning, Need and Types of research design,		
Literature Survey and Review, Identifying gap areas from literature	_	1.5
review, Research Design Process, Sampling fundamentals,	5	15
Measurement and scaling techniques, Data Collection -concept, types		
and methods, Design of Experiments.		
Module 4		
Quantitative Techniques: Probability distributions, Fundamentals of		
Statistical analysis, Data Analysis with Statistical Packages,	5	15
Multivariate methods, Concepts of correlation and regression -		
Fundamentals of time series analysis and spectral analysis.		
SECOND INTERNAL TEST		
Module 5		
Report Writing: Principles of Thesis Writing, Guidelines for writing		
reports & papers, Methods of giving references and appendices,	4	20
Reproduction of published material, Plagiarism, Citation and		
acknowledgement.		
Module 6	4	
Documentation and presentation tools - LaTeX, Office with basic	4	20
presentations skills, Use of Internet and advanced search techniques.		

04 ME 6691- Syllabus

Course No.	Course Name	L-T-P	Credits	Year of Introduction
04 ME 6691	SEMINAR I	0-0-2	2	2020
Prerequisite: Nil				

Course Objectives: The objectives of the course are

- 1. To improve written and oral presentation skills and to develop confidence in making public technical presentations
- 2. To introduce a new relevant topic and share it to the peer group

Each student shall prepare a seminar paper on any topic of interest related to the core/elective courses being undergone in the first semester of the M.Tech. programme. He/she shall get the paper approved by the Programme Coordinator/Faculty Members in the concerned area of specialization and shall present it in the class in the presence of Faculty in-charge of seminar class. Every student shall participate in the seminar. Grade will be awarded on the basis of the student's paper, presentation and his/her participation in the seminar.

Goals: This course is designed to improve written and oral presentation skills and to develop confidence in making public presentations, to provide feedback on the quality and appropriateness of the work experience, and to promote discussions on design problems or new developments or ethical and safety issues in the workplace.

Expected outcome: At the end of the course, the student will be able to

- 1. Present advanced topics related to Engineering Design based on recent journal papers
- 2. Report effectively the topic of seminar as a bound volume

04 ME 6693 – Syllabus

Course No.	Course Name	L-T-P	Credits	Year of Introduction		
04 ME 6693	Product Design Lab	0-0-2	1	2020		
Prerequisite: Nil						
Course Objectives	: The objectives of the course are					
1. To create d	igital Mock-up of components/syst	tems using	various 3D n	nodelling packages		
2. To enable s	tudents to do simulation studies us	ing softwa	e			
Syllabus						
Part A						
Computer Aided Engineering Design						
Computer aided modelling and drafting: Part creation, surface generation, solid modelling of machine						

Computer aided modelling and drafting: Part creation, surface generation, solid modelling of machine parts and rendering of parts, assembly of parts. Parametric modelling of standard parts, – library creation – catalogue making – customisation using various software like visual basic, Kinematic simulation of mechanisms. Ergonomic Analysis of systems. Routing of Electrical and Mechanical Electrical Harness routing, 3 D printing of parts.

Software: Students must be trained in 3D Modelling Software such as CatiaV5, NX, Creo, Solid Works etc, as part of the Lab exercise.

Part B

Solving design problems using software

Modular programming practice in MATLAB/Python. Applications of passing function as an argument in MATLAB\Python. Plotting tools in MATLAB/Python. Programming of mathematical algorithms for: the solution of a system of linear equations, eigenvalue decomposition of a matrix. Simulation of optimization algorithms. Simulation of electro-mechanical systems.

Expected outcome: At the end of the course, the student will be able to

- 1) Design the digital mock-up of a product/system.
- 2) Do mathematical simulation studies using software.

No	List of Evonoises	Course	No of
INO	List of Exercises	Outcomes	Hours
1	Modelling of brackets/machine components	CO 1	2
2	Modelling of Assembly of machine components	CO 1	2
3	Surface Modelling of parts and rendering	CO 1	2
4	Parametric modelling of standard parts & Creation of library/catalogues	CO 1	2
5	Kinematic simulation of simple mechanisms	CO 1	2
6	Ergonomic Analysis of products	CO 1	2
7	Routing of Electrical Harness	CO 1	2
8	Customisation of CAD software using macros	CO 1	2
9	3D printing of parts	CO 1	2
10	Laser cutting and engraving of parts	CO 1	2
11	Modular programming practice using software	CO 2	1
12	Programming of mathematical algorithms for: the solution of a system of linear equations	CO 2	1
13	Programming of mathematical algorithms for: the solution of a system of linear equations	CO 2	1
14	Eigenvalue decomposition of a matrix using software	CO 2	1
15	Simulation of optimisation algorithms	CO 2	1
16	Simulation of electro-mechanical systems	CO 2	1

SEMESTER II

04 ME 6602 – **Syllabus**

Course No	Course Name	L-T-P	Credits	Year	of Introduction	
04 ME 6602	Finite Element Method	3-1-0	3		2020	
Pre requisite: Basic	understanding of Advanced	Mechanics of	solids			
Course Objectives: T 1. To impart the 2. To focus on the engineering an 3. To enhance the commercial parts	 Course Objectives: The main objectives of this course are 1. To impart the basic concepts of finite element method 2. To focus on the practical aspects of applying the Finite Element Method to various problems in engineering and science 3. To enhance the students understanding by writing simple computer programme and use of 					
Syllabus:						
Basic concepts of FE method, Truss stru- transformation and di method of weighted r analysis and modellin	EM – a general procedure f ctures: The direct stiffno rect assembly of global stiff esiduals, the Galerikin finito g using Matlab and Comme	for finite elem ess method fness matrix, N e element meth ercial software	ent analysis, br – Nodal equi Iethod of weigh nod, Application	ief history librium eo nted residua ns in solid 1	of finite element quation, element als – introduction, mechanics, modal	
Expected outcome: T	he student will be able to					
 Define math Write simple Use comment 	ematical model and create f e computer programme for f rcial software for finite elen	finite element r finite element a nent analysis	nodel. analysis			
Text Books:		<u>y</u>				
1. David V Hutton, "	Fundamentals of finite elen	nent analysis",	McGraw Hill.			
References: 1. Daryl L. Logan, " 2. J. N. Reddy, "An 3. C. Zienkiwiez, "T 4. K. H. Huebner, "T 5. Robert D Cook,"H	 References: 1. Daryl L. Logan, "First course in finite element method", Cengage Learning, Singapore. 2. J. N. Reddy, "An introduction to the finite element method", McGraw Hill 3. C. Zienkiwiez, "The finite element method", McGraw Hill, New York. 4. K. H. Huebner, "The finite element method of engineers", John Wiley & Sons, New York. 5. Robert D Cook,"Fnite Element modelling for stress Analysis", Wiley 					
	COU	URSE PLAN				
	MODULES			Contact hours	Sem. Exam Marks; (%)	
Module 1 Basic concepts of Mathematical Model Equations – Discrete behaviour, Boundary FEM-Need for studyi	FEM –brief history of lling of field problems i e and continuous models, , Initial and Eigen Value ng FEM	f finite elem n Engineering discretization problems. Var	ent method. g, Governing -convergence ious steps of	8	9 (15)	

Module 2 Linear spring as a finite element, elastic bar, spar/link/truss element. assembly of global stiffness matrix, boundary conditions, constraint forces, element strain and stress, Plane truss- Element formulation-Co ordinate transformation- Local and global co-ordinates- Stress calculations. FIRST INTERNAL TEST	10	9 (15)
Module 3 Interpolation functions-Shape functions- Lagrange interpolation- 1D linear and quadratic element. Derivation of Shape functions and Stiffness matrices and force vectors- Assembly of Matrices, Strong and week form-one dimensional stress and Heat conduction	9	9 (15)
Module 4 Variational methods: Functionals, Principle of stationary potential energy- Rayleigh Ritz method. FE formulation of- B matrix- Element matrices for bar element- Consistent nodal loads.Weighted residual method: Galerkin FE formulation. Axially loaded bar- Heat flow in a bar.Weighted residual method: Galerkin FE formulation. Axially loaded bar- Heat flow in a bar	9	9 (15)
SECOND INTERNAL TEST		
Module 5 Polynomial forms- one dimensional elements, triangular elements, rectangular elements, Higher order elements- Quadratic and cubic elements- Pascal's triangle. Iso parametric elements, Natural coordinates, Quadrilateral elements- Serendipity elements- isoperimetric formulations	10	12 (20)
Module 6 Numerical integration: Gaussian quadrature. Finite element formulation of beam and frame element. Introduction to Modal analysis, non-linear analysis and coupled analysis. Introduction to FEM modelling using computer programme and Commercial software	10	12 (20)

04 ME 6604 - Syllabus

Course No	Course Name	L-T-P	Credits	Year of Introduction
04 ME 6604	Modelling and Control Engineering Systems	of 3-0-0	3	2020
Prerequisite: U	Inder graduate level knowledge	e in Mathematics		
Course Object	ives: The main objectives of th	is course are		
1. To intro	duce the mathematical model of	f engineering sys	stems	
2. To intro	duce methods for analyzing the	e time response, t	he frequence	cy response and the stability
of system	ns.			
3. To desig	gn control systems with compen-	nsating technique	es.	
4. To desig	n the state feedback controller	and observers		
Syllabus				
Introduction to	linear systems - Modeling of e	ngineering syster	ns - Free, fo	orced and transient response
of first and seco	ond order systems - Solution of	f differential equ	ation using	Laplace Transforms - Time
domain and Fr	equency domain analysis - St	ate space repres	entation - S	System characteristics from
state space repr	esentation - Controller and Obs	erver design.		
Expected outco	ome: The student will be able to	0		
1. Classify diffe	erent types of system and identi	fy a set of algebr	aic equation	ns to represent a system
2. Understand the signals	me response of first and secon	d order control sy	ystems for c	lifferent standard test
3. Formulate the	e analysis in frequency domain	to explain the na	ture of stab	oility of the system
4. Apply root lo	cus technique and bode plot fo	r designing diffe	rent compe	nsators
5. Design the co	ontrollers and observers in state	space		
Reference bool	۲S د د د د د د د د د د د د د د د د د د د			
1. Woods	Robert L. and Lawrence Kent I	, "Modelling an	d Simulatio	on of Dynamic Systems",
Prentice	Hall, 1997.			
2. Ashish	Fiwari, "Modern Control Desig	n with MATLAH	B and SIMU	JLINK", John Wiley, 2002.
3. Kuo, B.	C., Automatic Control System	s, Prentice Hall,2	2012	
4. Nagrath	I J and Gopal M, Control System	ems Engineering,	, New Age	India Pvt Limited, 2009
5. Ogata K	., Modern Control Engineering	, Prentice Hall of	f India, Nev	v Delhi, 2010.

COURSE PLAN				
MODULES	Contact	Sem. Exam		
	hours	Marks; (%)		
Module 1				
Introduction to control, classification of dynamic systems -Modelling of				
engineering systems, Transfer Function - mechanical, electrical, fluid	6	9 (15)		
and thermal systems, Poles and Zeros. Standard Inputs, Free and Forced	0	9 (15)		
Response				

Module 2 Time domain analysis-Time response of first and second order systems, specifications in time domain. Response with Proportional (P), Integral (I), Derivative (D) and PID controllers Concept of stability, Routh's stability criterion. Root locus method of analysis. Effect of adding Poles and Zeros.	8	9 (15)
FIRST INTERNAL TEST		
Module 3 Frequency domain analysis - Frequency Response, Bode Plots, Relative Stability – Gain and Phase Margins.	7	9 (15)
Module 4 Design of Lag, Lead and lag-lead compensators using Root locus and Bode plot	7	9 (15)
SECOND INTERNAL TEST		
Module 5 State-Space Representation of Control Systems, Eigenvalues and Eigenvectors, State-Space Representation of Dynamic Systems. Solving State Equations, Controllability and Observability.	7	12 (20)
Module 6 State feedback design - Pole Placement technique, State observer - Asymptotic observers for state measurement-open loop observer-closed loop observer formulae for observer gain - implementation of the observer - full order and reduced order observers.	7	12 (20)

04 ME 6606 – **Syllabus**

Course No.	Course Name	L-T-P	Credits		Year of
				Int	roduction
04 ME 6606	Design for Manufacturing and Assembly	3-0-0	3		2020
Prerequisite: An ur	nder graduate course in Design & H	Engineering			
Course Objectives: 1. To understar different pro 2. To learn adv 3. To encourag needs.	The main objectives of this course ad tools and technique used in desi- ducts as case-studies. anced tools and techniques for dim e students to develop environment	e are gn for manu nensioning a ally friendly	ifacture & as and tolerance products th	ssembly c ing. at satisfy	onsidering societal
Syllabus: Design for manufac Assessment, Design efficiency.	cturing, Tolerance analysis and read for dis-assembly, DFE- Methods	elated tools s and needs	, Design fo , Design for	r machini r recyclab	ng, Life cycle vility & energy
Expected outcome:	The student will be able to				
 Develop new qua Use advanced too Do case-studies situations. 	ality products that are environment ols & techniques related to dimens on different products that helps	ally friendly ioning and t s them to	y & reliable colerancing. apply those	techniqu	es in real-life
 Boothroyd C Second Editi Harry Peck, Spotts M. F. Boothroyd C Engineering, Creveling C. Prentice Hal 	G., Dewhurst P., and Knight W., "F ion, Marcel Dekker, New York, 20 "Designing for Manufacture", Pitr , "Dimensioning and Tolerance for G., "Design for Assembly: The Road , 1982. M., "Tolerance Design - A Hand 1, 1997.	Product Dest 02. nan Publica r Quantity F d to Higher Book for De	ign for Man tions, 1983. Production", Productivity eveloping Op	ufacture a Prentice I v", Assem	nd Assembly", Hall, 1983. bly ecifications",
	COUDSE I	NT A NT			
MODULES Contact Sem. Exam hours Marks: (%)					Sem. Exam Marks; (%)
Module 1 DFM approach, D Value engineering, Poke – Yoke princip	FM guidelines, Standardization. development and evaluation of bles.	Group te alternative	chnology, solutions,	7	9 (15)
Tolerance analysis aspects, geometric	– process capability, process cap c tolerances, cumulative effe	pability meters	trics, cost	7	9 (15)

Interchangeable and selective assembly. Control of axial play – secondary

machining operations, laminated shims.

FIRST INTERNAL TEST		
Module 3		
Datum systems-grouped datum systems - geometric analysis and		
applications. True position theory - true position tolerancing, zero true	7	9 (15)
position tolerance, functional gauges, paper layout gauging, compound		
assembly.		
Module 4		
Form design of castings and weldments - Redesign of castings -	7	0 (15)
redesigning cast members using weldments. Tolerance charting technique,	/	9(15)
centrality analysis – computer aided tolerance charting.		
SECOND INTERNAL TEST		
Module 5		
Design for machining Design features to facilitate machining functional		
Design for machining. Design reactives to factifiate machining – functional		
and manufacturing datum features, redesign for manufacture.		
and manufacturing datum features, redesign for manufacture. Environmental objectives – Global issues – Regional and local issues–	0	12 (20)
and manufacturing datum features, redesign for manufacture. Environmental objectives – Global issues – Regional and local issues– Basic DFE methods – Design guide lines – Example application –	8	12 (20)
and manufacturing datum features to facilitate machining – functional and manufacturing datum features, redesign for manufacture. Environmental objectives – Global issues – Regional and local issues– Basic DFE methods – Design guide lines – Example application – Lifecycle assessment – Basic method – AT&T's environmentally	8	12 (20)
and manufacturing datum features to facilitate machining – functional and manufacturing datum features, redesign for manufacture. Environmental objectives – Global issues – Regional and local issues– Basic DFE methods – Design guide lines – Example application – Lifecycle assessment – Basic method – AT&T's environmentally responsible product assessment - Techniques to reduce environmental	8	12 (20)
and manufacturing datum features to facilitate machining – functional and manufacturing datum features, redesign for manufacture. Environmental objectives – Global issues – Regional and local issues– Basic DFE methods – Design guide lines – Example application – Lifecycle assessment – Basic method – AT&T's environmentally responsible product assessment - Techniques to reduce environmental impact	8	12 (20)
and manufacturing datum features to facilitate machining – functional and manufacturing datum features, redesign for manufacture. Environmental objectives – Global issues – Regional and local issues– Basic DFE methods – Design guide lines – Example application – Lifecycle assessment – Basic method – AT&T's environmentally responsible product assessment - Techniques to reduce environmental impact Module 6	8	12 (20)
and manufacturing datum features to facilitate machining – functional and manufacturing datum features, redesign for manufacture. Environmental objectives – Global issues – Regional and local issues– Basic DFE methods – Design guide lines – Example application – Lifecycle assessment – Basic method – AT&T's environmentally responsible product assessment - Techniques to reduce environmental impact Module 6 Design to minimize material usage – Design for disassembly – Design for	8	12 (20)
and manufacturing datum features to facilitate machining – functional and manufacturing datum features, redesign for manufacture. Environmental objectives – Global issues – Regional and local issues– Basic DFE methods – Design guide lines – Example application – Lifecycle assessment – Basic method – AT&T's environmentally responsible product assessment - Techniques to reduce environmental impact Module 6 Design to minimize material usage – Design for disassembly – Design for recyclability – Design for remanufacture – Design for energy efficiency –	8	12 (20)
 Design for machining. Design features to facilitate machining – functional and manufacturing datum features, redesign for manufacture. Environmental objectives – Global issues – Regional and local issues – Basic DFE methods – Design guide lines – Example application – Lifecycle assessment – Basic method – AT&T's environmentally responsible product assessment - Techniques to reduce environmental impact Module 6 Design to minimize material usage – Design for disassembly – Design for recyclability – Design for remanufacture – Design for energy efficiency – Design to regulations and standards. 	8	12 (20)

04 ME 6608 – Syllabus

Course No.	Course Name	L-T-P	Credits	Year of Ir	ntroduction
04 ME 6608	Design and Analysis of	3-0-0	3	4	2020
	Energy systems				
Prerequisite: Basic	Mechanical Engineering				
Course Objectives:	The main objectives of this cou	irse are			
1. To understar	dagian principles of various has	fundamenta	al r aquinmont		
2. To learn the	stem design of a pumping system	at exchange	requipment		
4 To model ar	ad simulate a thermal system	111			
Svllabus:					
Engineering design	fundamentals - Designing a wo	rkable syste	m, Heat exch	anger desig	n calculations -
Evaporators and co	ndensers temperature concentry	ation pressu	re characteri	stics of bin	ary solutions -
Pump characteristic	s - Manufacturer's specificatio	ns - Relatio	ons among p	erformance	characteristics-
Basics of Second law	w analysis in heat and fluid flow	- Applicati	ons in therma	al design	
Expected outcome:	The student will be able to				
1. Design Heat	Exchangers				
2. Apply therm	odynamic laws in thermal desig	n			
3. Do the simul	ation Gas Turbine systems				
4. Mathematica	al modelling of large systems				
Text Books:					
1. Y. Jaluria: Desig	gn and Optimization of Thermal	Systems, M	lcGraw Hill,	1998.	
References:		L. W71 10	005		
1. A. Bejan: Therm	al Design and Optimization, Jo	nn wiley, I	995.		
2. W.F. Stoeker: D	esign of Thermal Systems, 3e, I	McGraw Hil	I, 1989.	0	
3. B.K. Hodge: An	alysis and Design of Energy Sys	stems, Prent	1ce Hall, 199	0.	
4. R.F. Boehm: De	sign Analysis of Thermal syster	ns, John Wi	ley, 1987 .	1 67 1 1	000
5. Jones J. B. and I	Jugan R. E.: Engineering Thern	nodynamics,	Prentice Hal	l of India, I	998.
6. Yunus A. Cenge	el: Thermodynamics: An Engine	ering approa	ach, McGraw	Hill, 1994.	1. 1000
W.J. Gajda and	W.E. Biles: Engineering Modeli	ng and Com	putation, Ho	ughton Miff	lin, 1980.
	COURS	F DI A N			
	MODULES			Contact	Sem, Exam
				hours	Marks; (%)
Module 1					
Engineering design	n fundamentals - Designing	a workab	le system -		0 (15)
Economic evaluation	on - Fitting data and solvi	ng equation	ns - Design	1 /	9(15)
optimization - Know	vledge based system design.				
Module 2					
Heat exchanger of	lesign calculations - Evapo	orators and	condensers		
temperature concern	tration pressure characteristic	s of binary	v solutions -	- 7	9 (15)
Rectifiers - Cooling	towers -Pressure drop and pump	ping power.			
	FIRST INTERNAL TEST	Γ			

Module 3 Pump characteristics - Manufacturer's specifications - Relations among performance characteristics - Pump system operation - Cavitation prevention - Other system considerations, Fans and nozzles.	7	9 (15)
Module 4 Basics of Second law analysis in heat and fluid flow - Applications in thermal design - Modelling and simulation principles	7	9 (15)
SECOND INTERNAL TEST		
Module 5 Hardy-Cross method - Multi-variable, Newton- Raphson simulation method - Simulation of a gas turbine system	7	12 (20)
Module 6 Simulation using differential equations - Mathematical modelling of thermodynamic properties – Steady state simulation of large systems.	7	12 (20)

04 ME 6612 - **Syllabus**

Course No.	Course Name	L-T-P	Credits	Year of	Introduction		
04 ME 6612	Design Automation with IoT	3-0-0	3	2020			
Prerequisite: Basic knowledge in Electronics							
Course Objectives	: The main objectives of this cour	se are					
1. To introduce	e students to the field of IoT						
2. To familiari	se students' different types of sens	sors used in	automation				
3. To provide a	awareness about the applications of	of IoT					
Syllabus:							
Introduction to IoT	& Cyber-Physical Systems, Com	nunication	and network	ing technol	logies in IoT,		
sensors and charact	eristics, actuators-different types i	ncluding M	IEMS, applic	cations of I	Тс		
Expected outcome	: The student will be able to						
1. Identify differen	at networks that can be used in IoT	-					
2. Select sensors th	hat can be used for loT application	l					
3. Apply in simple	e industrial automation application	S					
1 Adrian McF	wan and Hakim Cassimally "Des	signing the	internet of th	ings" Wild	ev 2013		
				, with	1) 2015		
2. Vijay Madis VPT, 2014.	setti and Arshdeep Bahga,"Intern	et of Thing	gs (A Hands	-on-Approa	ich)",1 Edition,		
3. N. Ida, Sens	ors, Actuators and Their Interface	s, Scitech H	Publishers, 20	014.			
 Dr. Guillaume Girardin, Antoine Bonnabel, Dr. Eric Mounier, 'Technologies & Sensors for the Internet of Things Businesses & Market Trends 2014 - 2024', YoleDéveloppement Copyrights .2014 							
5. Jacob Frade	n, (2010), Handbook of Modern S	ensors, 5th	Edition, Spr	inger.			
6. Jan Holler,	Vlasios Tsiatsis, Catherine Mullig	an, Stamati	s Karnousko	s, Stefan A	vesand, David		
7. Boyle, "From	m Machine-to-Machine to the Inte	ernet of Thi	ngs -Introdu	ction to a N	lew Ageo		
Intelligence	"Elsevier						
	COURSE	PLAN					
	MODULES			Contact	Sem. Exam		

MODULES	hours	Marks; (%)
Module 1 Introduction to IoT & Cyber-Physical Systems, IoT Enabling Technologies – Physical End points, Network Services, Cloud. Different Levels of IoT Applications.	7	9 (15)
Module 2 Communication and networking technologies in IoT: Communication models, AdHoc. Industrial & Automotive Networks, Vehicular networks	7	9 (15)

FIRST INTERNAL TEST		
Module 3		
Thermo resistive Sensors- Thermistors, Resistance Temperature Sensors,		
and Silicon Resistive Sensors, Thermo electric sensors, PN junction	7	9 (15)
temperature sensors, thermos mechanical sensors and actuators. Quantum		(10)
effects of optical radiation, quantum based optical sensors, photoelectric		
sensors, optical actuators.		
Module 4		
Electric and magnetic sensors and actuators-Capacitive Position,		
Proximity, and Displacement Sensors, Capacitive Actuators, Inductive	7	9 (15)
Sensors, Hall Effect Sensor, Voltage and Current Sensors, Radiation	7)(15)
sensors - ionization sensors, microwave sensors, antennas as sensors and		
actuators.		
SECOND INTERNAL TEST		
Module 5		
Mechanical Sensors and Actuators- force sensors, pressure sensors,		
Acoustic actuators, ultrasonic sensors and actuators. MEMS and Smart	6	12 (20)
sensors- pressure sensors, thermal and piezo electric actuation, wireless		
sensors and actuators and issues associated with their use.		
Module 6		
IoT implementation in Transportation and logistics, Energy and utilities,		
Automotive Connected supply chain, Plant floor control automation,		
remote monitoring, Management of critical assets, and proactive		
maintenance.	8	12 (20)
Applications HCI and IoT world -Multilingual interactions Robotics and		
Autonomous Vehicles Sensing and data processing-Simultaneous mapping		
and localization-Levels of autonomy, Smart factories, Future research		
challenges.		

04 ME 6614 - **Syllabus**

•		I			
Course No.	Course Name	L-T-P	Credits	Year of 2	Introduction
04 ME 6614	Advanced Fluid Flow and	3-0-0	3		2020
	Heat Transfer				
Prerequisite: E	Prerequisite: Basic Mechanical Engineering				
Course Object	ives: The main objectives of this c	ourse are			
1. To prov	ide knowledge regarding fluid-flov	<i>w</i> phenomer	a like poten	tial flow, v	viscous flow,
boundar	y-layer flows, etc. in various appli	cations.	Ĩ	,	
2. To enha	nce the understanding of fluid med	chanics, incl	uding the eq	uations of	motion in
differen	tial form and turbulence.		0	L	
3. To unde	rtake sustained learning in fluid m	echanics to	extend their	knowledge	e in heat transfer
problem	18			0	
Svllabus:					
Lagrangian and	l Eulerian approaches, Angular de	formation a	nd rotation,	Reynolds (transport theorem,
Potential flows,	Viscous flows and Navier-Stoke's	s equation,	Boundary la	yer theory,	Turbulent flows,
Convective heat	transfer	•		•	
Expected outco	ome: The student will be able to				
1. Underst	and the basic approaches in fluid n	nechanics ar	nd use Reyn	olds transp	ort theorem.
2. Underst	and the potential flow approach an	d apply the	concept in f	luid flow p	roblems.
3. Use Nav	vier-Stoke's equation in various flu	id flow pro	blems.	I I I I I	
4. Underst	and the concept of boundary layer	and apply b	oundary lav	er equatior	18.
5. Underst	and the basics of turbulent flow an	d turbulence	e modeling.	1	
6. Apply th	he knowledge of fluid mechanics in	n convective	e heat transfe	er.	
Reference boo	ks				
1. S. K. Sc	om Gauthan Biswas and Suman Ch	akraborthy,	Introduction	n to Fluid N	Mechanics and
Fluid M	achines. Mc Graw Hill, 2012.	, , , , , , , , , , , , , , , , , , ,			
2. John M	Cimbala and Yunus A. Cengel, F	Juid Mecha	nics: Fundar	nentals and	Applications.
Mc Gray	w Hill 2019				<i></i>
3 Frank Ir	cropera and David P. Dewitt, Fund	damentals o	f Heat and N	Aass Trans	fer. Wilev
student	edition 2007		I IIout und I	1400 114110	iei, (filey
4 S P Ve	enkateshan Heat Transfer Ane Bo	oks Pvt Ltd	2016		
4. 5.1. (0	incuestion, from fransfer, fine box		, 2010.		
	COURS	SE PLAN			
	MODULES			Contact	Sem. Exam
				hours	Marks; (%)
Module 1					
Lagrangian and	I Eulerian Approach, Types of flu	uid flow- S	treamlines,		
Streakline and	Pathline- Acceleration of fluid fl	ow- Deform	nation and		
Conservation o	f mass of fluid element- Angular	deformatior	n of a fluid	7	9(15)
element- vortio	city- stream function and veloc	ity potentia	al- Euler's	/) (15)
equation and	Bernoulli's equation- Reynolds	Transport	Theorem-		
Application of I	RTT: Conservation of mass and lin	lear momen	tum.		

Module 2 Potential flow: Uniform flow, source flow, sink flow, source and sink pair, doublet, plane source in a uniform flow- source and sink pair in a uniform flow- doublet in a uniform flow- Flow past a cylinder with circulation- Magnus effect- Kutta-Juokowsky's law- Concept of lift and drag.	7	9 (15)
FIRST INTERNAL TEST		
Module 3 Incompressible viscous flow- Navier-Stoke's equation and significance (derivation not necessary)- Navier-Stoke's equation for steady incompressible flows with negligible body forces- Fully developed flow between two parallel plates - Couette flow- Hagen-Poiseuille flow- Hagen-Poissuille equations for velocity and discharge through a pipe- friction factor for laminar flow- Flow between two rotating cylinders	7	9 (15)
Module 4 Introduction to Boundary layer- Scaling and order of magnitude analysis- Flow over a fat plate: Blasius equation- Momentum integral method for boundary layer analysis- Approximate solution of the momentum integral equation- Displacement and Momentum thickness- Illustrative examples- Boundary layer separation	7	9 (15)
SECOND INTERNAL TEST		
Module 5 Turbulent Flow: Introduction to turbulent flow, Governing equations of turbulent flow, Turbulent boundary layer equation, Flat plate turbulent boundary layer, Fully developed Turbulent pipe flow for moderate Reynold's number, Prandtl mixing hypothesis, Turbulence modeling.	6	12 (20)
Module 6 Convective heat transfer- Dimensional analysis- Solutions to free and forced convection in laminar and turbulent- internal and external flows- Reynolds and Colburn analogies- Free and forced convection correlations.	8	12 (20)

04 ME 6616 - **Syllabus**

Course No	Course Name	L-T-P	Credits	Year of Introduction	
	Measurement of Mechanical				
04 ME 6616	and Electrical Systems	3-0-0	3	2020	
Prerequisite.	Propagnicita: Pagia knowledge in Machanias and Electronias				
Course Objection	use The main objective of this cov				
Lourse Objecti	rn various mechanical & Electrical	Irse is	at technique	s for different parameters	
Svllabus	in various meenamear & Electrical	measuremen			
Generalized m	easuring system and functional el	lements. Inst	rumentation	and control, LVDT, ADC	
DAC. Measur	rement of temperature by intrus	sive (Therm	ocouples T	hermistors and Resistance	
Temperature I	Detector) and non-intrusive (pyro	meters) tech	niques Ma	asurement of force torque	
nower and accord	pletetion Massurement of ass son	appreciation la	inques, mea	astrement of force, torque,	
power and acco	eleration, measurement of gas con	centration, le		e	
Expected outc	ome: The student will be able to				
I. Analys	e the statistical data obtained throu	igh measuren	nent		
2. Conditi	ioning the electronic data obtained	through mea	surements		
3. Acquir	e data inputs using sensors from a	system			
4. Select t	he correct transducers for measure	ement of temp	perature, pre	ssure etc of fluids	
5. Select t	he correct transducers for measure	ement of forc	e, torque &	power etc	
Reference Tex	kt Books: -				
1. Measur	rement Systems: Application and I	Design- E.O.	Doebelin- N	IcGraw Hill	
2. Mechan	nical Measurements - S. P. Venkat	eshan- Ane I	Books India		
3. Princip	les of Measurement systems – Joh	n P. Bentley	– Pearson E	ducation	
4. Experin	nental Methods for Engineers- J. F	P. Holman, T	ata-McGraw	' Hill	
5. Introdu	ction to instrumentation and meas	urements- Ro	obert B. Nor	throp-CRC press	

COURSE PLAN			
MODULES	Contact	Sem Exam	
	hours	Marks; %	
Module 1			
Introduction to measurement and measurement System: Generalized			
measurement system and functional elements, Static and dynamic			
performance characteristics of measurement devices, Errors in measurements,	7	9 (15)	
Statistical analysis of data, Regression analysis, Chi-Square Testing,			
correlation, estimation of uncertainty and presentation of data, elementary			
principles of design of experiments.			
Module 2			
Signal conditioning and signal processing elements of measurement systems:			
Effects of noise and interference on measurement circuits, Noise sources and	7	9 (15)	
coupling mechanisms, Methods of reducing effects of noise and interference -			
Signal Conditioning Elements- Analogue signal conditioning, Deflection			

and resonators - Signal Processing Elements- Analogue-to-digital (A/D)		
conversion, Successive-Approximation ADCs, Tracking or servo ADCS,		
Signal processing calculations- Digital signal processing- Digital Filters and		
the <i>z</i> -Transform, Simple DSP Algorithms		
FIRST INTERNAL TEST		
Module 3		
Measurement of temperature, pressure and flow velocity: Measurement of temperature by intrusive (Thermocouples, Thermistors and Resistance Temperature Detector) and non-intrusive (pyrometers) techniques. Measurement of pressure - manometers, elastic type pressure gauges (Bourdon tube, diaphragm, and bellows), strain gauges – capacitive type pressure gauge – piezoelectric pressure sensor, Measurement of vacuum – McLeod gauge, thermal conductivity gauges, Ionization gauge - Testing and calibration of pressure gauges – dead weight tester. Measurement of flow velocity- intrusive and nonintrusive types- Pitot and Pitot static tube, Hot wire Anemometer - Ultrasonic and laser Doppler velocity meter, particle image velocimetry.	7	9 (15)
Module 4		
Measurement of gas composition, liquid level and noise: Measurement of gas composition- Sampling systems, sampling probe, molecular beam sampling probe - separation methods - gas chromatography, flame ionization detector, Spectroscopic techniques, non-separation methods- Non Dispersive infrared analyzer, Luminescence-based detectors- Principles of liquid level measurement- buoyancy force, differential pressure, capacitor and resistance level indicators, Measurement of noise-sound level meters.	7	9 (15)
SECOND INTERNAL TEST		
Module 5		
Measurement of force, torque, power and acceleration: force measurement by mechanical balancing, force to displacement transformation and force to pressure transformation- strain gauges, piezoelectric transducer, Load cells for force measurement - Torque and power measurement – dynamometers - measurement of angular velocity – Tachometers, mechanical and fiber optic gyroscopes - Measurement of linear acceleration- Accelerometers – theoretical consideration of a seismic mass accelerometer, piezoelectric and fiber optic accelerometers-Laser Doppler Vibrometer	7	12 (20)
Measurement of force, torque, power and acceleration: force measurement by mechanical balancing, force to displacement transformation and force to pressure transformation- strain gauges, piezoelectric transducer, Load cells for force measurement - Torque and power measurement – dynamometers - measurement of angular velocity – Tachometers, mechanical and fiber optic gyroscopes - Measurement of linear acceleration- Accelerometers – theoretical consideration of a seismic mass accelerometer, piezoelectric and fiber optic accelerometers-Laser Doppler Vibrometer	7	12 (20)

04 ME 6618 – **Syllabus**

Course No.	Course Name	L-T-P	Credits	Year of	Introduction		
04 ME 6618	04 ME 6618 Mechanical Behaviour of 3-0-0 3 2020						
	Materials						
Prerequisite: Nil							
Course Objectives: T	he main objectives of this course are	9					
1. To learn the m	nechanical behaviour of various ma	aterial unde	r different lo	ading cond	litions		
2. To systematic	ally specify and justify suitable ma	aterial(s) for	a given app	lication, in	cluding the		
use of relevan	t material selection methodologies						
Syllabus:			1 1 1 .	1.1 1			
Elasticity in metals and	functions to the second s	anisms, wo	rk hardening	, solid soli	itioning, Stress		
intensity factor and	fracture tougnness – Fatigue, lo	w and hig	n cycle fati	gue test,	viotivation for		
selection, cost dasis	in materials	tion for me	chanical pro	operties, M	lodern metallic		
materials, Non-metall	ic materials.						
Expected outcome:	The student will be able to						
1 Understand th	e effect of temperature strain and	strain rate c	n nlastic heł	aviour			
2 Calculate Stre	ss intensity factor and fracture tour	ohness	in plastic bei	lavioui			
3 Select the idea	al material for different application	S					
4 Classify differ	ent types of steels						
5. Use Advanced	l ceramics depending on the applic	ation					
Text Books:	eerannee depending on the appre						
1. Thomas H. Court	ney, Mechanical Behavior of Mate	erials, (2nd	edition), Mc	Graw Hill,	2000.		
References:	•						
1. George E. Dieter,	Mechanical Metallurgy, McGraw	Hill, 1988					
2. Charles, J.A., Cra	ne, F.A.A. and Fumess, J.A.G., Se	lection and	use of engin	eering mat	erials, (34d		
edition), Butterwo	orth-Heiremann, 1997.						
3. Flinn, R.A., and T	rojan, P.K., Engineering Materials	s and their A	Applications,	(4thEditio	n) Jaico, 1999.		
4. Metals Hand book	x, Vol.10, Failure Analysis and Pre	evention, (1	Oth Edition),	Jaico, 199	9W,		
"Handbook of En	gineering Mechanics", McGraw H	ill, 1962.					
	COURSE P	PLAN		Cartat	C E		
	MODULES			Contact	Sem. Exam Marks: (%)		
Module 1				nouis	1 1111 N3 ; (70)		
Elasticity in metals	s and polymers– Strengthening	g mechanis	sms, work				
hardening, solid sol	hardening solid solutioning grain boundary strengthening poly phase 7 9(15)						
mixture, precipitation, particle, fibre and dispersion strengthening							
Module 2		0 0					
Effect of temperature	e, strain and strain rate on plast	ic behavior	ur – Super				
plasticity –. Griffith	s theory, – Ductile, brittle trans	sition in ste	el – High	7	9 (15)		
temperature fracture,	creep – Larson Miller parameter	er – Defori	nation and		× - /		
fracture mechanism n	naps.						
	FIRST INTERNAL TEST						

Module 3		
Stress intensity factor and fracture toughness - Fatigue, low and high cycle		
fatigue test, crack initiation and propagation mechanisms and Paris law Safe	7	0(15)
life, Stress life, strain-life and fail - safe design approaches -Effect of surface	/	9(15)
and metallurgical parameters on fatigue - Fracture of non-metallic materials -		
Failure analysis, sources of failure, procedure of failure analysis.		
Module 4		
Motivation for selection, cost basis and service requirements - Selection for		
mechanical properties, strength, toughness, fatigue and creep - Selection for		
surface durability corrosion and wear resistance - Relationship between		
materials selection and processing - Case studies in materials selection with	7	9 (15)
relevance to aero, auto, marine, machinery and nuclear applications -		
Computer aided materials selection		
SECOND INTERNAL TEST		
Module 5		
Dual phase steels, High strength low alloy (HSLA) steel, Transformation		
induced plasticity (TRIP) Steel, Maraging steel, Nitrogen steel – Intermetallic,	7	12 (20)
Ni and Tialuminides - smart materials, shape memory alloys - Metallic glass		
and nanocrystalline materials.		
Module 6		
Polymeric materials – Formation of polymer structure – Production		
Polymeric materials – Formation of polymer structure – Production techniques of fibres, foams, adhesives and coating – structure, properties and	7	12 (20)
Polymeric materials – Formation of polymer structure – Production techniques of fibres, foams, adhesives and coating – structure, properties and applications of engineering polymers – Advanced structural ceramics, WC,	7	12 (20)
Polymeric materials – Formation of polymer structure – Production techniques of fibres, foams, adhesives and coating – structure, properties and applications of engineering polymers – Advanced structural ceramics, WC, TIC, TaC, Al2O3, SiC, Si3N4 CBN and diamond – properties, processing and	7	12 (20)

04 ME 6620 - **Syllabus**

Course No.	Course Name	L-T-P	Credits	Year of	Introduction		
04 ME 6620	Experimental Stress Analysis	3-0-0	3		2020		
Prerequisite: Adva	anced Mechanics of Solids						
Course Objectives	Course Objectives: The main objectives of this course are						
1. To provide	knowledge regarding the theory and	l application	n of strain g	auges for st	tress analysis.		
2. To provide	knowledge on the theory of photo-e	lasticity an	d its various	application	ns.		
3. To create an	awareness on Moire fringe method	l, Brittle co	ating technic	que and Ho	olography for		
stress analys	sis.						
4. To give an u	understanding about different Non-c	lestructive	testing meth	ods.			
Syllabus:							
Principal stresses a	nd strains – Three-dimensional stre	ess – strain	relationship	s, Transver	se sensitivity –		
Selection and mour	nting of strain gauges – Strain gauge	e rosettes, T	heory of ph	otoelasticit	y - Stress-optic		
law - Plain Polarise	cope& Circular Polariscope –Moire	e fringe met	thod and Br	ittle coating	g technique for		
stress analysis.							
Expected outcome	: The student will be able to						
1. Understand	the basic approaches in solid mecha	anics and us	se in the app	lication of	strain gauges		
for stress an	alysis.						
2. Calculate st	ress and strain using strain gauges.						
3. Apply the p	rinciples of photoelasticity to measu	ire strain					
4. Understand	the basics of different Non-destruct	tive testing	methods.				
Text Books:		D 11'1		1. 1000			
1.Sadhu Singh, "Ex	sperimental Stress Analysis", Khani	ha Publishe	rs, New Dell	hi, 1996.			
1 Dalley and Rile	w "Experimental stress Analysis"	McGraw H	ill 1991				
2 Dove and Adam	ns "Experimental Stress Analysis a	nd Motion	measuremen	t" Prentice	- Hall 1965		
3 Hetenvi "Hand	book of Experimental stress Analys	sis" John W	/ilev 1960	, i i entre	e 11uii, 1905.		
4 Perry and Lisse	ner "Strain gauge Primer" McGray	w Hill 1962)				
5 McGonnagle "	Non-destructive Testing" McGraw	Hill 1961					
6 American Socie	etv for Metals "Metals Hand Book	– Vol 7" 19	984 "Handh	ook of Eng	oineering		
Mechanics" M	cGraw Hill 1962	von., 1.			Sincering		
	COURSE I	PLAN					
	MODULES			Contact	Sem. Exam		
				hours	Marks; (%)		
Module 1							
Introduction: –Prin	cipal stresses and strains – Three	-dimension	al stress –				
strain relationships	- Plane stress and Plane strain cor	ditions. Stu	ain gauges				
– Types – Mechai	nical, Optical and Electrical strain	n gauges –	- Electrical	7	9(15)		
resistance strain	gauges – Gauge factor – Strai	n gauge o	circuitry –	,	7 (13)		
Temperature comp	ensation – Bridge balancing and c	alibration of	of D.C and				
A.C bridges.							

Module 2		
Application of strain gauges: - Transverse sensitivity - Selection and		
mounting of strain gauges – Strain gauge rosettes – Analysis of strain gauge		
data and stress calculations - Recording equipment for static and dynamic	7	9 (15)
strains - Strain gauge transducers - Introduction to semiconductor strain		
gauges - Residual stresses - Beneficial and harmful effects - Principle of		
residual stress measurement methods.		
FIRST INTERNAL TEST		
Module 3		
Photoelasticity: Theory of photoelasticity - Stress-optic law - Plain	7	0 (15)
Polariscope & Circular Polariscope - Isoclinic & Isochromatic fringes -	/	9(15)
Partial fringe value and compensation techniques - Tardy's Method		
Module 4		
Photoelastic model materials and their desired properties - use of photo		
elastic coatings. Applications of Photoelasicity for two dimensional models -	7	9 (15)
Separation of Principal stresses – Scaling models to prototype. Introduction		
to 3D Photoelasticity.		
SECOND INTERNAL TEST		
Module 5		
Other Stress analysis techniques - Moire fringe method and Brittle coating	C	12 (20)
technique for stress analysis. Introduction to Holography in stress analysis.	6	12 (20)
Non-destructive testing – Types – Dye penetrate methods,		
Module 6		
Radiography, X-ray and Gamma ray - X-ray fluoroscopy - Penetrameter -	0	12 (20)
Magnetic particle method. Introduction to lasers in NDT - Ultrasonic flaw	δ	12 (20)
detection		

04 ME 6622 – **Syllabus**

Course No.	Course Name	L-T-P	Credits	Year of	Introduction
04 ME 6622	Engineering fracture Mechanics	3-0-0	3		2020
Prerequisite: Adva	nced Mechanics of Solids				
Course Objectives:	The main objectives of this course a	re			
1. To understar	nd the basics of fracture mechanics				
2. To understar	nd the crack initiation and propagat	tion concept	ts		
Syllabus:					
The geometry of s	tress and strain, elastic deformat	tion, Two o	dimensional	elastic fie	lds – Analytical
solutions yielding r	hear a crack front, Griffith analys	sis – stable	and unstab	le crack g	rowth –Dynamic
energy balance, En	pirical relation describing crack	growth lav	w – life cal	culations f	for a given load
amplitude, Crack In	itiation under large scale yielding t	hickness as	a design par	ameter.	_
Expected outcome:	The student will be able to				
1. Describe the	ory, concepts and principles of frac	cture mecha	nics		
2. Solve proble	ms involving fractures using analy	tical and co	omputational	tools	
3. Predict the li	fe of mechanical parts using the co	oncepts of fi	racture mech	anics	
Text Books:					
1. Preshant Kumar	; "Elements of Fracture Mechanics	s", Wheeler	Publishing,	1999.	
References:		[1 ¹	E:61	1 NT 11 4	C T = 4 = 1
1. David Broek, E	lementary Engineering Fracture M	lechanics",	Fifth off and	a Noeranoi	T International
Publisher, 1978.				10	05
2. Kare Hellan, "In	troduction of Fracture Mechanics"	, McGraw-	Hill Book Co	ompany,19	85.
3. John M. Barson	and Stanely T. Rolfe Fatigue and f	racture con	trol in struct	ures Prenti	te hall Inc.
Englewood cliff	s. 19//Prager W., "Introduction to	Plasticity",	, Oxford Uni	versity Pre	ss, 1959.
4. Kachanov.L.M.,	"Foundations of Theory of Plastic	ity", North-	-Holland Put	blishing Co	., 1971.
	COURSE	DI AN			
	MODULES			Contact	Sem, Exam
				hours	Marks; (%)
Module 1					
The geometry of st	ress and strain, elastic deformation	on, plastic	and elasto-	7	0(15)
plastic deformation	- limit analysis - Airy's function	n – field e	quation for	/	9(15)
stress intensity facto	or.				
Module 2					
Two dimensional el	astic fields - Analytical solutions	yielding n	ear a crack	7	9 (15)
front.					
	FIRST INTERNAL TEST				
Module 3					
Irwin's approximati	on - plastic zone size – Dugdaale n	nodel detern	mination of	7	9 (15)
integral and its relat	ion to crack opening displacement.				

Module 4 Griffith analysis – stable and unstable crack growth –Dynamic energy balance –crack arrest mechanism –K1c test methods - R curves - determination of collapse load.	7	9 (15)
SECOND INTERNAL TEST		
Module 5 Empirical relation describing crack growth law – life calculations for a given load amplitude – effects of changing the load spectrum rain flow method– external factors affecting the K1c values leak before break analysis.	7	12 (20)
Module 6 Crack Initiation under large scale yielding thickness as a design parameter – mixed mode fractures - crack instability in thermal and residual stress fields – numerical methods.	7	12 (20)

04 ME 6624 - **Syllabus**

•

Course No.	Course Name	L-T-P	Credits	Year of	Introduction
	Composite Materials and				
04 ME 6624	Mechanics	3-0-0	3		2020
Prerequisite: Nil		•	L	I	
Course Objectives	: The main objectives of this course	are			
1. To impart k	knowledge about different types of	composites	5		
2. To know th	e formulation of constitutive relati	ons			
3. To gain kno	owledge about the different proper	ties of com	posites.		
Syllabus: Lamina	constitutive relations, Lamina	Constitutiv	e Equations	s: Lamina	Assumptions -
Macroscopic View	point. Generalized Hooke's Law				
Expected outcome	e: The student will be able to				
1. Describe th	e general characteristics and applie	cations of c	omposite ma	terials	
2. Apply cons	titutive equations of composite ma	terials and	understand r	nechanical	behaviour at
micro and r	nacro levels				
3. Determine	stresses and strains relation in com	posites mat	erials.		
4. Analyze the	e properties of a composite materia	al based on	given data		
Reference books					
		r 1 '			
I. Issac M. Da	aniel and Orilshai, "Engineering N	lechanics of	t Composite	Materials	,Oxford
University	Press-2006, First Indian Edition –	2007.			·
2. Mallick, P.	K., Fiber – "Reinforced Composite	s: Materials	s, Manufactu	ring and D	esign",
3. Maneel Del	kker Inc, 1993.		- 1	N 1111	~
4. Halpın, J.C	., "Primer on Composite Materials	, Analysis"	, Technomic	Publishing	g Co., 1984.
5. Agarwal, B	B.D., and Broutman L.J., "Analysis	and Perform	mance of Fil	per Compos	sites", John
Wiley and	Sons, New York, 1990.				
6. Mallick, P.	K. and Newman, S., (edition), "Co	mposite Ma	aterials Tech	nology: Pr	ocesses and
Properties"	, Hansen Publisher, Munish, 1990.				
7. Madhujit N	Iukhopadhyay, "Mechanics of Cor	nposite Ma	terials and S	tructures".	
8. Gibson, R.I	F., Principles of Composite Materi	al Mechanio	es, McGraw-	-Hill,1994,	Second Edition -
CRC press	in progress.				
9. Hyer, M.W	<i>I.</i> , "Stress Analysis of Fiber – Rein	forced Con	nposite Mate	erials", Mc	Graw-Hill, 1998.
	MODULES	L PLAN		Contact	Som Exom
	MODULES			hours	Sem. Exam Marks: (%)
Module 1					
General Characteri	stics, Applications. Fibers – Glass	, Carbon, C	eramic and		
Aramid fibers. Ma	trices – Polymer, Graphite, Ceram	ic and Met	al Matrices		- - - - -
– Characteristics of	of fibers and matrices. Lamina C	onstitutive	Equations:	7	9 (15)
Lamina Assumpti	ons – Macroscopic Viewpoint.	Generalize	d Hooke's		
Law. Reduction to	Homogeneous Orthotropic Lamin	a –Isotropic	limit case		
	C 1	Ľ	· · · ·		

Module 2 Orthotropic Stiffness matrix (Qij), Typical Commercial material properties, Rule of Mixtures. Generally Orthotropic Lamina – Transformation Matrix, Transformed Stiffness. Manufacturing: Bag Moulding – Compression Moulding –Pultrusion – Filament Winding –	7	9 (15)
Other Manufacturing Processes.		
Modulo 3		
Definition of stress and Moment Resultants. Strain Displacement relations. Basic Assumptions of Laminated anisotropic plates. Laminate Constitutive Equations –Coupling Interactions, Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, Cross Ply Laminates. Laminate Structural Moduli. Evaluation of Lamina. Properties from Laminate Tests. Quasi-Isotropic Laminates. Determination of Lamina stresses within Laminates	7	9 (15)
Module 4 Introduction - Maximum Stress and Strain Criteria. Von-Misses Yield criterion for Isotropic Materials. Generalized Hill's Criterion for Anisotropic materials. Tsai-Hill's Failure Criterion for Composites. Tensor Polynomial (Tsai-Wu) Failure criterion. Prediction of laminate Failure.	7	9 (15)
SECOND INTERNAL TEST		
Module 5 Equilibrium Equations of Motion. Energy Formulations. Static Bending Analysis. Buckling Analysis. Free Vibrations – Natural Frequencies.	6	12 (20)
Module 6 Modification of Hooke's Law due to thermal properties - Modification of Laminate Constitutive Equations. Orthotropic Lamina - special Laminate Configurations –Unidirectional, Off-axis, Symmetric Balanced Laminates - Zero C.T.E laminates, Thermally Quasi-Isotropic Laminates.	8	12 (20)

04 ME 6692 – Syllabus

Course No.	Course Name	L-T-P	Credits	Year of Introduction			
04 ME 6692	Mini Project	0-0-2	2	2020			
Prerequisite:	Nil						
Course Object	ives: The objectives of the course is/	are					
1. To prepare	students for final year project						
Syllabus							
Synabus The sim of the	mini musicatio to musua the stude	nto for the	fin al sua an mu	sight The terris for the mini			
The aim of the	mini project is to prepare the stude	ents for the	linal year pro	bject. The topic for the mini			
project should	be simple as compared to the m	ain project,	, but should	cover all the aspects of a			
complete proje	ct						
Expected outo	come: At the end of the course, the s	student will	be able to				
1. Practice	e acquired knowledge related to Eng	gineering D	esign for pro	oject development.			
2. Identify	, discuss and justify the technical a	spects of th	e chosen pro	ject with a comprehensive			
and sys	and systematic approach						
3. Apply	practical tools/techniques in order to	o solve actu	al problems	related to Industry			
4. Comm	inicate and report effectively project	ct related ac	tivities and f	indings			

04 ME 6694 – Syllabus

Course No.	Course Name	L-T-P	Credits	Year of Introduction		
04 ME 6694	Product Analysis and Testing	0-0-2	1	2020		
	Lab					
Prerequisite: Nil						
Course Objecti	ves: The objectives of the course are	;				
1. To Prac	tice the modelling of mechanical s	system/com	ponents usir	ng application software		
2. To Practice the modelling of control systems						
3. To gain	practical knowledge about vibratio	nal system	S			
4. To acqu	ire expertise in experimental stress	analysis				

Syllabus

Part A

Computer Aided Engineering Simulation: -

Analysis of Mechanical Components – Use of FEA Packages like ANSYS/ ABAQUS /Hyper mesh etc., Exercises shall include analysis of i) Machine elements under Static loads, thermal Analysis of mechanical systems/iii) Vibration Analysis, Machine elements under Dynamic loads, Electro Mechanical Coupled problems, Non-linear contact problems, flow analysis using CFD tools

Part B

Simulation of Control Systems: -

Stability analysis of a system by plotting Root locus and Bode plot using MATLAB software. State space model for classical transfer function using MATLAB, Real Time Liquid Level Control Using P, PI and PID Controllers, Speed and position control using DC servo motor.

Part C

Experimental System Analysis: -

Whirling of shafts, Free vibration analysis, forced vibration analysis, Torsional vibration analysis, balancing of revolving masses, Vibration signature analysis of different existing machines such as Lathe, Grinder, Compressors, Blower etc, Vibration analysis of roller bearings, vibration analysis using FFT analyser, Machine Condition Monitoring

Part D

Experimental Stress Analysis: -

Stress Analysis using strain gauge, photo elastic and holographic methods

Note: Should do at least 15 exercises from the four parts of the syllabus

Expected outcome: At the end of the course, the student will be able to

- 1. Analyse structural, thermal and coupled problems
- 2. Design control system using simulation software.
- 3. Do the condition monitoring of mechanical systems
- 4. Validate stress analysis results obtained through simulation

No	List of Exercises	Course Outcomes	No of Hours
1	Analysis of a cantilever Beam	CO 1	2
2	Analysis of a plane stress situation	CO 1	2
3	Analysis involving plane strain condition	CO 1	2
4	Heat transfer analysis	CO 1	2
5	Analysis of a thermo mechanical coupled problem	CO 1	2
6	Analysis of an electro mechanical coupling problem	CO 1	2
7	Electromagnetic field simulation	CO 1	2
8	Two-dimensional flow analysis	CO 1	2
9	Three-dimensional flow analysis	CO 1	2
10	Stability analysis of a system by plotting Root locus and Bode plot using software	CO 2	1
11	State space model for classical transfer function using software	CO 2	1
12	Real Time Liquid Level Control Using P, PI and PID Controllers		
13	Condition monitoring of machinery with FFT analysis	CO 3	1
14	Vibration level estimation of machinery	CO 3	1
15	Condition monitoring of bearings	CO 3	1
16	Natural frequency estimation based on bump testing	CO 3	2
17	Conduct stress measurement on a 3-point bending polycarbonate beam using photoelasticity.	CO 4	2
18	Conduct strain measurement on an axially loaded member using moire fringe method.	CO 4	2
19	Conduct strain measurement of cantilever beam using a strain gauge.	CO 4	2
20	Conduct strain measurement of cantilever beam using three strain gauges in rectangular rosette	CO 4	2
21	Conduct Strain measurement using holography method	CO 4	2

SUMMER BREAK

04 ME 7690-Syllabus

Course No	Course Name	L-T-P	Credits	Year of Introduction			
04 ME 7690	Industrial Training	0-0-4	4	2020			
Prerequisite: Nil							
Course Obje	tives: The objective is						
1. To g	ain knowledge in industrial practice	es and thereb	by make stud	ents industry ready			
Syllabus:							
The s	udent shall undergo an industrial	training for	a minimum	period of 12 weeks in an			
industry/ con	pany approved by the institution	and under t	the guidance	e of a staff member in the			
concerned fie	ld. The candidate is also required to	o identify, d	efine, formu	late and offer an acceptable			
solution for a	problem observed in the organization	on. At the en	nd of the tra	ining he/she has to submit a			
report on the	work being carried out.			-			
Expected out	come: The student will be able to						
1. Preser	t the functional aspects and tech	nnical aspec	ets of the o	organization related to the			
Engin	eering Design domain	-		-			
2. Identi	y, define, formulate and offer an	acceptable a	solution for	a problem observed in the			
organ	zation	1		1			
3. Com	3. Communicate and report effectively training related activities and findings						
L	÷ •	-		-			

SEMESTER III

04 ME 7601- Syllabus

Course No	Course Name]	L-T-P	Credits	Year o	of Introduction		
04 ME 7601	Micro Electro Mecha Systems	nical	3-0-0	3		2020		
Prerequisite: N	Nil							
Course Objecti	ves: The objectives of the cou	irse is/are						
1. To intr	oduce the new field -micro	electro me	echanica	l systems				
2. To know the application of micro electro mechanical systems								
Syllabus	Syllabus							
Materia	ls-substrates, Additive mat	terials. F	Fabricatio	on technic	ues-Standar	rd IC packages-		
ceramic, plastic	and metal packages. Packag	ging proce	ess, Piezo	o resistivity	y, Piezoelec	tricity, Capacitive		
Techniques, Te	echniques for sensing-Physi	cs of pre	essure se	ensing-Pres	sure sensor	specifications, -		
Silicon based d	evises-Optical devises-capac	itive devi	ses-Mag	netic devic	ces.			
Expected outco	me: The student will be able	to						
1. Describ	e the systems, components a	nd proper	ties of M	licro Elect	ro Mechanic	cal Systems		
2. Select N	AEMS sensors for the mecha	nical syst	em desig	gn.	•			
3. Create p	bressure sensor (MEMS type) specifica	ations re	quired for	a situation			
1 Nadim Ma	Inford Vint Williams?	internal	las ati a m	ta Miana	-1	alaniaal Gratam		
I. Nadim Ma	Artaal Harra Ing Destan	an introd	luction	to Micro	electro me	chanical System		
Engineering	,Artech House, Inc. Boston.2	2003.						
References:		1 17 0	1	1 3371		1 · 1 ,		
1. Stephen Be	eby, Graham Ensell, Micha	el Kraft	and Nei	I White,	MEMS Me	chanical sensors		
Artech Hous	se, Inc. Boston 2003	OUDCE	DI ANI					
	MODULES	OURSE	FLAN		Contact	Sem Eyam		
	MODULES				hours	Marks: %		
Module 1								
Introduction, N	Materials-substrates, Additiv	ve mater	ials. Fa	brication	7	0 (15)		
techniques- D	Peposition, Lithography,	etching,	Surface	micro	/	9(15)		
machining, Thi	ck film screen-printing and e	lectroplat	ing.					
Module 2								
Introduction, S	Standard IC packages-cera	umic, pla	astic an	d metal	7	0 (15)		
packages. Pack	aging process-Electrical inte	rconnects	s, Metho	ds of die	1	9(13)		
attachment, sea	ling techniques. MEMS mec	hanical se	ensor pac	ckaging.				
	FIRST INTERNAL TEST							
Module 3	 .							
Piezo resistivity, Piezoelectricity, Capacitive Techniques, Optical79 (15)								
techniques, Resonant techniques. Actuation techniques								
Module 4		D ' 7		1 . 1	_			
Smart Sensors	. MEMIS Simulation and	Design	1001S-Be		7	9 (15)		
model ling simi	Liation tools and Finite eleme	ent simula	ation too	15				
	SECOND INTERNAL T	EST						

Module 5 Introduction-Techniques for sensing-Physics of pressure sensing- Pressure sensor specifications-Dynamic pressure sensing. Pressure sensor types-MEMS technology pressure sensors-Micro machined silicon diaphragms.	7	12 (20)
Module 6 Introduction-Silicon based devises-Optical devises-capacitive devises-Magnetic Devices-Atomic force microscope and scanning probes- micro machined accelerometer-Micro machined Gyroscope- Future inertial micro machined sensors.	7	12 (20)

04 ME 7603 – **Syllabus**

Course No	Course Name	L-T-P	Credits	Year of Introduction		
04 ME 7603	Computational Fluid Mechanics	3-0-0	3	2020		
Prerequisite:	Prerequisite: Basic Mechanical Engineering and under graduate courses in Mathematics					
Course Objec	tives: The objectives of the course are	to give the	student:			
1. An intr	oduction of numerical approach in flui	d mechanic	s and heat tr	ansfer		
2. Founda	tion for different discretization scheme	e using Tayl	or series ex	pansion and develop		
skills to	o check consistency, stability and error	s of those so	cheme			
3. Basics	of point-by-point and line-by-line meth	hod, explicit	t, implicit, C	Crank-Nicholson		
and Al	DI schemes used in heat conduction pro	oblems				
4. Fundar	nentals of finite volume method for dif	fusion and o	convection-	diffusion		
proble	ms					
Svllabus:						
Governing equ	ations of fluid mechanics and heat	transfer: cla	assifications	s of PDE Experimental.		
theoretical and	I numerical approaches. Discretization	- Tavlor's s	eries appro	ach. Errors. consistency.		
stability and co	onvergence analysis. Steady 1D and 2I	D heat cond	uction prob	lems; point-by-point and		
line-by-line m	ethod; Dirichlet, Neumann, and Rol	bins bound	ary condition	ons; tri-diagonal matrix		
algorithm; tra	nsient heat conduction problems -	explicit, im	plicit, Cra	nk-Nicholson and ADI		
schemes. Finit	e volume method for diffusion and c	onvection-c	liffusion pro	oblems; upwind, hybrid,		
power-law and	QUICK schemes stream function-vor	ticity formu	lation; SIM	PLE algorithm		
Expected outc	ome: The student will be able to					
1. Apply numeri	the computational methods to solve head and the solve head and the solution of	at transfer a	nd fluid flov	w problems		
2. Do nur finite d	nerical analysis like consistency, stabil ifference scheme.	ity and erro	rs of differe	nt		
3. Conduc	ct CFD analysis for a physical problem	l				
Text Books:						
1. Anderson, I	D, A, Tannehill, J C, and R H Pletcher,	R H, Comp	outational Fl	uid Mechanics and Heat		
Transfer, See	cond Edition, Taylor & Francis, 1995					
2. Muraleedha	r, K and T Sundararaja T(eds.) Compu	tational Flui	id flow and	Heat Transfer, Second		
Edition, Nat	osa Publishing House, 2003.					
4. Versteeg, H	K and W Malalasekera, W, An Introd	duction to C	Computation	al Fluid Dynamics: The		
Finite Volun	ne method, Addison Wesley-Longman,	, 1995 Elana Ham	ionhana 10	20		
4. ratalikar, S,	v, mumerical near transfer and Fluid	riow, Hem	usphere, 198	00.		
1 Kloug A	Hoffmann Stave T Chiang Computati	onal Fluid I	Junamica E	ourth Edition Volume		
1. Klaus A. I	ering Education System 2000		ynannes, r			
2 Hornbeck	R W Numerical Marching Technique	es for Fluid	Flows with	Heat Transfer NASA		
SP -297. 1	1973.		10 W 5 W 101	11000 110115101, 1171071,		

- 3. Computational Fluid Dynamics: The Basics with Applications John D Anderson, Jr, McGraw-Hill, 1995
- 4. Computational Methods for Fluid Dynamics Joel H. Ferziger and Milovan Peric. Springer

COURSE PLAN				
MODULES	Contact hours	Sem Exam Marks; %		
Module 1				
Governing equations of fluid mechanics and heat transfer;				
fundamental equations - continuity equation, momentum equation	7	0 (15)		
and energy equation; non-dimensional form of equations; averaged	1	9(13)		
equations for turbulent flows; boundary layer equations for steady				
incompressible flows.				
Module 2				
Physical and mathematical classifications of partial differential				
equations. Comparison of experimental, theoretical and numerical				
approaches; applications of CFD. Discretization-converting	7	0 (15)		
derivatives to their finite difference forms-Taylor's series approach,	7	9(13)		
polynomial fitting approach; forward, backward and central				
differencing Schemes. Discretization error, truncation error, round				
off error.				
FIRST INTERNAL TEST				
Module 3				
Consistency and numerical stability analysis of different schemes-	7	9(15)		
case studies; iterative convergence, condition for convergence, rate	,) (15)		
of convergence; under and over relaxations, termination of iteration.				
Module 4				
Steady one–dimensional conduction in Cartesian and cylindrical				
coordinates; handling of boundary conditions; two-dimensional				
steady state conduction problems; point-by-point and line-by-line	7	9 (15)		
method of solution; dealing with Dirichlet, Neumann, and Robins	/) (15)		
type boundary conditions; tri-diagonal matrix algorithm; transient				
heat conduction problems -explicit, implicit, Crank-Nicholson and				
ADI schemes; stability criterion of these schemes.				
SECOND INTERNAL TEST				
Module 5				
Finite volume method for diffusion and convection-diffusion	7	12 (20)		
problems; steady one-dimensional convection and diffusion;		()		
upwind, hybrid, power-law and QUICK schemes; false diffusion				
Module 6				
Properties of discretization schemes, conservativeness,	_			
stream function contricity formulation of the flow field using	7	12 (20)		
stream function-vorticity formulation. Solution algorithm for				
pressure-velocity coupling in steady flows-SIMPLE algorithm				

04 ME 7605 – **Syllabus**

Course No	Course Name	L-T-P	Credits	Year of I	ntroduction		
04 ME 7605	Vehicle Dynamics	3-0-0	3	2	.020		
Prerequisite: I	Prerequisite: Engineering Mechanics						
Course Object	ive: The objectives of the course is/a	ire					
1. To provide a	an overview of important concepts of	of road vehi	icle dynamic	8.			
Syllabus:							
Introduction to	Vehicle Dynamics, Longitudinal	Dynamics	, Tire Mecha	anics, Tire I	Model, Lateral		
Dynamics, Sub	jective and Objective Evaluation	of Vehicle	e Handling, T	Vertical Dyn	namics, Noise,		
Vibration and H	Harshness.						
Expected outco	me: The student will be able to						
1. Analyze road	l vehicles for their longitudinal dyn	amic respon	nse during ac	celeration ar	nd braking.		
2. Analyze road	l vehicles for their lateral dynamic	response du	ring cornerin	ıg.			
3. Analyze road	l vehicles for their vertical dynamic	response to	o analyze rid	e, pitch and	roll.		
Reference book	ζ <u>S</u>						
1. Wong, Jo Yu	ing. Theory of ground vehicles. Joh	n Wiley &	Sons, 2001.				
2. R. Rajamani,	, Vehicle Dynamics and Control.	1					
3. K. N. Jazar,	venicle Dynamics: Theory and App	dynamics 1	1002				
4 Gillespie, Thomas D. Fundamentais of venicle dynamics, 1992.							
COURSE PLAN							
	MODULES			Contact	Sem. Exam		
				hours	Marks; (%)		
Module 1			, , , , , , , ,				
Introduction to	Vehicle Dynamics, Longitudinal D	ynamics, V	ehicle Load				
Distribution –	Acceleration and Braking - Bra	ake Force	Distribution	7	9 (15)		
Braking Efficie	Braking Efficiency and Braking Distance - Longitudinal dynamics of a						
Tractor-Semi T	Tractor-Semi Trailer						
Module 2							
Tire Mechanics	s – An Introduction, Mechanical	Properties	of Rubber -	7	9 (15)		

 Slip, Grip and Rolling Resistance - Tire Construction and Force
 '

 Development - Contact Patch and Contact Pressure Distribution
 '

 FIRST INTERNAL TEST
 '

 Module 3
 Tire Model Lateral Force Concretion

 Tire Model Lateral Force Concretion
 Phy Steer and Conjuity

Tire Model, Lateral Force Generation - Ply Steer and Conicity - Tire
Models - Magic Formula - Classification of Tire Models and Combined
Slip69 (15)

Module 4		
Lateral Dynamics-Bicycle Model - Stability and Steering Conditions - Understeer Gradient and State space Approach - Handling Response of a Vehicle - Mimuro Plot for Lateral Transient Response - Parameters affecting vehicle handling characteristics	8	9 (15)
SECOND INTERNAL TEST		
Module 5 Subjective and Objective Evaluation of Vehicle Handling, Rollover prevention	7	12 (20)
Module 6 Vertical Dynamics - quarter car model, Noise, Vibration and Harshness – Random Processes	7	12 (20)

04 ME 7607 – **Syllabus**

Course No	Course Name	L-T-P	Credits	Year of Introduction	
04 ME 7607	Design of Material handling	3-0-0	3	2020	
	Equipment				
Prerequisite: I	Engineering Mechanics				
Course Objecti	ives: The objectives of the course is/a	are			
1. To know	w different types of material handlin	ng equipme	ent		
2. To desig	gn material handling equipment like	e hoists, coi	nveyors elev	ators etc	
Syllabus					
Types, selection	n and applications-Design of hoistin	ng elements	s: Welded an	d roller chains, Hand and	
power drives - '	Traveling gear - Rail traveling mec	hanism - ca	ntilever and	monorail cranes, Types -	
description - de	sign and applications of Belt conve	eyors, apror	conveyors,	Bucket elevators: design -	
loading and bud	cket arrangements - Cage elevators.				
Expected outco	ome: The student will be able to				
1. Select the	he correct type of material handling	equipment	for the situa	tion	
2. Design	the components of material handlin	g systems			
3. Design	material handling systems like hois	ts, conveyo	ors elevators	etc	
Text Books:					
1. Rudenko, N.	, Materials handling equipment, EL	nvee Publi	shers, 1970.		
2. Spivakovsy,	A.O. and Dyachkov, V.K., Convey	ying Machi	nes, Volume	es I and II, MIR Publishers,	
1985.					
References:					
1. Alexandrov,	1. Alexandrov, M., Materials Handling Equipment, MIR Publishers, 1981.				
2. Boltzharol, A	A., Materials Handling Handbook, 7	The Ronald	Press Comp	any, 1958.	
3. P.S.G. Tech.	3. P.S.G. Tech., "Design Data Book", Kalaikathir Achchagam, Coimbatore, 2003.				
4. Lingaiah. K. and Narayana Iyengar, "Machine Design Data Hand Book", Vol. 1 & 2, Suma					
Publishers, Bar	ngalore, 1983.				

COURSE PLAN				
MODULES	Contact hours	Sem Exam Marks: %		
Module 1 Hoists Types, selection and applications-Design of hoisting elements:	7	9 (15)		
Welded and roller chains - Hemp and wire ropes	,	y (15)		
Module 2 Design of ropes, pulleys, pulley systems, sprockets and drums, Load handling attachments. Design of forged hooks and eye hooks – crane grabs	7	9 (15)		
FIRST INTERNAL TEST				
Module 3 Lifting magnets -Grabbing attachments - Design of arresting gear - Brakes: shoe, band and cone types.	7	9 (15)		

Module 4 Hand and power drives - Traveling gear - Rail traveling mechanism - cantilever and monorail cranes - slewing, jib and luffing gear - cogwheel drive - selecting the motor ratings.	7	9 (15)
SECOND INTERNAL TEST		
Module 5 Conveyors: Types - description - design and applications of Belt conveyors, apron conveyors and escalators Pneumatic conveyors, Screw conveyors and vibratory conveyors	7	12 (20)
Module 6 Elevators: Bucket elevators: design - loading and bucket arrangements - Cage elevators – shaft way, guides, counter weights, hoisting machine, safety devices - Design of fork lift, trucks.	7	12 (20)

04 ME 7609 – **Syllabus**

Course No	(Course Name		L-T-P	Credits	Year of Introduction
04 ME 7609	Rapid Tooling	Prototyping	and	3-0-0	3	2020
Prerequisite: Nil						
Course Objectives	: The objec	tives of the cours	e is/are			
1. To know di	ifferent type	es of rapid proto	typing _l	processes.		
2. To know he	ow to do th	e rapid prototypi	ing of 3	D models.		
Syllabus						
Need - Developme	ent of RP sy	stems – RP pro	cess cha	ain -Stereol	ithography A	Apparatus, Fused deposition
Modelling, Lamin	ated object	t manufacturing,	, – Dat	a Processir	ng for Rapic	l Prototyping: CAD model
preparation, Class	ification: S	Soft tooling, Pr	oductio	n tooling,	Bridge tool	ling; direct and indirect –
Fabrication proces	ses, Applic	ations. Case stud	lies - au	tomotive, a	erospace an	d electronics industries.
Expected outcome	: The stude	nt will be able to				
1. Describe th	e different	types of rapid pr	rototypi	ng process		
2. Design the	prototype f	for rapid prototy	ping			
3. Do the rapi	d prototypi	ng of any model	l			
Text Books:						
1. Rapid prototyp	ing: Princij	ples and applicat	ions, se	cond editio	n, Chua C.K	., Leong K.F., and
Lim C.S., Wor	d Scientif	ic Publishers, 20	03.			
2. Rapid Tooling:	Technolog	gies and Industria	al Appli	ications, Pe	ter D. Hilton	, Hilton/Jacobs, Paul
F. Jacobs, CRC press, 2000						
References:						

1. Rapid prototyping, Andreas Gebhardt, Hanser Gardener Publications, 2003.

- 2. Rapid Prototyping and Engineering applications: A tool box for prototype development, Liou W. Liou, Frank W.Liou, CRC Press, 2007.
- 3. Rapid Prototyping: Theory and practice, Ali K. Kamrani, Emad Abouel Nasr, Springer, 2006.

COURSE PLAN					
MODULES	Contact	Sem Exam			
	hours	Marks; %			
Module 1					
Introduction: Need - Development of RP systems - RP process chain -	7	0(15)			
Impact of Rapid Prototyping and Tooling on Product Development -	1	9(15)			
Benefits- Applications – Digital prototyping - Virtual prototyping.					
Module 2					
Liquid based and solid based rapid prototyping systems: Stereolithography					
Apparatus, Fused deposition Modelling, Laminated object manufacturing,	-	0 (17)			
three-dimensional printing: Working Principles, details of processes,	/	9(15)			
products, materials, advantages, limitations and applications - Case studies					
FIRST INTERNAL TEST					

Module 3		
Powder based rapid prototyping systems: Selective Laser Sintering, Direct		
Metal Laser Sintering, Three-Dimensional Printing, Laser Engineered Net	7	9 (15)
Shaping, Selective Laser Melting, Electron Beam Melting: Processes,		
materials, products, advantages, applications and limitations - Case Studies		
Module 4		
Reverse engineering and cad tooling: Basic concept- Digitization	_	
techniques - Model Reconstruction - Data Processing for Rapid	7	9 (15)
Prototyping: CAD model preparation, Data Requirements		
SECOND INTERNAL TEST		
Module 5		
Geometric modelling techniques: Wire frame, surface and solid modelling		
- data formats - Data interfacing, Part orientation and support generation,	7	12 (20)
Support structure design, Model Slicing and contour data organization,		
direct and adaptive slicing, Tool path generation		
Module 6		
Rapid Tooling: Classification: Soft tooling, Production tooling, Bridge	-	12 (20)
tooling; direct and indirect -Fabrication processes, Applications. Case	1	12 (20)
studies - automotive, aerospace and electronics industries.		

04 ME 7611 – Syllabus

Course No	Course Name	ΙΤΡ	Crodita	Vooro	fIntroduction		
04 ME 7611	Electric and hybrid vahiolog	L-1-1	2				
	Electric and hybrid vehicles	5-0-0	3		2020		
Prerequisite: 1	Prerequisite: Basic Electrical and Electronics Engineering						
Course Object	Ives: The objectives of the course is/	are					
I. IO impa	art knowledge about electric vehicle	es.					
Introduction to	Hybrid Electric Vehicles and Elec	etric Vehicle	Types of	FVs Hybr	id Electric Drive-		
train Electric	Drives Energy Consumption		of Hyl	rid Electri	c Drive Trains		
Configuration	and control of motors Energy S	torage Syst	em Batte	rv & fuel c	ell based energy		
storage and its	and control of motors, Energy 5 analysis Hybridization of differen	t energy st	orage devi	ces Reverse	engineering and		
cad tooling B	analysis, Hybridization of differen	n energy su	Reconstr	uction Da	ta Processing for		
Papid Prototyp	ing Connected Mobility and Autor	nomous Mol	hility EVa	$\frac{1}{10}$ in infrastru	cture system		
Expected outer	mg. Connected Woonity and Autor	Iomous wio	Unity, Eve	5 III IIII asu u	clure system		
1 Underst	tand the basics of hybrid electric ve	hiala					
1. Underst	tand the basics of hybrid electric ve	mere					
2. Ulidersi	and about drives and control	ttom monor	amont au	tom			
J. Select L	battery and apply the concept of ba	illery manag	gement sys	stem			
4. Design	battery charger for an Ev						
5. Describ	e the latest trends in E-venicle new	working					
1 Emadi	A (Ed) Miller I Ebsani M " Vehicu	lar Flactric I	Dower syst	em" Boca I	Paton CPC Press		
2003	A (Eu) Miner J Elisani Mi, Venicu		l Ower syst	iciii , Doca i			
2. Husain	I," Electric and Hybrid Vehicles", 1	Boca Raton	, CRC Pres	ss 2003			
3. Larmin	ie, James and John Lowry," Electri	c Vehicle T	echnology	v Explained"	', John Wiley and		
sons,20	12						
4. Iqbal H	ussein, Electric and Hybrid Vehicle	es: Design F	undament	als, CRC Pre	ess, 2003.		
5. Domini	que Paret, "Multiplexed Networks	for Embedd	ed System	s: CAN, LIN	N, Flex Ray,		
Safe-by	-Wire", Wiley,2007.		-		-		
	COURS	SE PLAN		<u> </u>			
	MODULES			Contact hours	Sem Exam Marks; %		
Module 1							
Review of Co	onventional Vehicle. Introduction	to Hybrid	Electric				
Vehicles and E	lectric Vehicles. Types of EVs, Hy	brid Electri	c Drive-	7	9 (15)		
train, Tractive e	ffort in normal driving.						
Module 2							
Electric Drive	s Energy Consumption Concept	of Hybrid	Electric				
Drive Trains,	Architecture of Hybrid Electric I	Drive Trains	s, Series				
Hybrid Electri	c Drive Trains, Parallel hybrid e	lectric driv	e trains,	7	9 (15)		
Electric Propu	Ision unit, Configuration and con	ntrol of DC	2 Motor				
drives, Inducti	on Motor drives, Permanent Ma	gnet Motor	drives,				
switched reluct	switched reluctance motor						

FIRST INTERNAL TEST		
Module 3 Energy Storage System: Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles: - Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Hybridization of different energy storage devices. Sizing the drive system.	7	9 (15)
Module 4 Reverse engineering and cad tooling: Basic concept- Digitization techniques – Model Reconstruction – Data Processing for Rapid Prototyping: CAD model preparation, Data Requirements	7	9 (15)
SECOND INTERNAL TEST		
Connected Mobility and Autonomous Mobility- case study E- mobility Indian Roadmap Perspective. Policy: EVs in infrastructure system, integration of EVs in smart grid, social dimensions of EVs. Connectors- Types of EV charging connector, North American EV Plug Standards, DC Fast Charge CCS (Combined Charging System), Tesla, European EV Plug Standards	7	12 (20)
Module 6 Vehicular Communications: Intelligent Transportation Systems: IEEE 802.11p-ITS-IVC: Inter Vehicle Communications- Mobile Wireless Communications and Networks- Architecture Layers Communication Regime.V2V, V2I-VANET-WAVE; DSRC. Information In The Vehicle Network Routing-Physical Layer Technologies-Medium Access For Vehicular Communications- Security Applications And Case Studies.	7	12 (20)

04 ME 7613 - Syllabus

Course N	lo		Course Name)	L-T-P	Credits	Year of Introduction
04 ME 76	13	Modal A	nalysis of M	lechanical	3-0-0	3	2020
	Systems						
Prerequisit	e: A c	course on V	ibration Analy	sis and Con	ıtrol		
Course Obj	ective	s: The object	tives of the cou	urse is/are			
1. To u	nders	tand the the	oretical proceed	dure for con	ducting the	modal analy	ysis
2. To k	now t	he extractio	on of modal par	rameters			
Syllabus:							
Introduction	to M	lodal Testir	ıg – Applicatio	ons of Mod	al Testing	– Philosoph	y of Modal Testing –Single
Degree of	Freed	om (SDOF	7) System The	eory – Pre	esentation a	and Properti	ies of FRF Data, – Basic
Measureme	nt Sys	stem – Stru	cture preparat	ion – Excit	ation of th	e Structure,	SDOF Modal Analysis-I –
Peak amplit	ude– S	SDOF Mod	al Analysis-II	– Circle Fit	Method, D	erivation of	mathematical models.
Expected outcomes: The student will be able to							
1. Set u	ip the	system for	modal analysis	s of specime	ens		
2. Con	2. Conduct the modal analysis of specimens						
3. Inter	3. Interpret the results obtained from experimental modal analysis						
Text Books:							
1. Ewi	1. Ewins D J, "Modal Testing: Theory and Practice ", John Wiley & Sons Inc., 1988.						
References:							
1. Nur	1. Nuno Manuel Mendes Maia et al," Theoretical and Experimental Modal Analysis", Wiley John&						al Analysis". Wiley John&

1. Nuno Manuel Mendes Maia et al," Theoretical and Experimental Modal Analysis", Wiley John& sons, 1997.

COURSE PLAN					
MODULES	Contact hours	Sem Exam Marks; %			
 Module 1 Overview: Introduction to Modal Testing – Applications of Modal Testing – Philosophy of Modal Testing – Summary of Theory – Summary of Measurement Methods – Summary of Analysis – Review of Test Procedure Module 2 Theoretical Basis: Introduction – Single Degree of Freedom (SDOF) System Theory – Presentation and Properties of FRF Data for SDOP 	7 7 7	9 (15) 9 (15)			
System – Undamped Multi-degree of freedom (MDOF) system					
FIRST INTERNAL TEST					
Module 3 Proportional Damping – Hysteretic Damping – General Case –Viscous Damping – General Case – Characteristics and presentation of MDOF – FRF Data – Complete and incomplete models - Non-sinusoidal vibration and FRF- Properties – Analysis of Weakly Nonlinear Structures.	7	9 (15)			

Module 4 Basic Measurement System – Structure preparation – Excitation of the Structure – Transducers and Amplifiers – Analyzers – Digital Signal Processing –Use of Different Excitation types – Calibration – Mass Cancellation – Rotational Mobility Measurement – Measurement on Nonlinear structures – Multi pointe excitation methods.	7	9 (15)
SECOND INTERNAL TEST		
Module 5 Modal Parameter extraction methods: Introduction – Preliminary checks of FRF Data – SDOF Modal Analysis-I – Peak amplitude– SDOF Modal Analysis-II – Circle Fit Method – SDOF Modal Analysis III –Inverse Method – Residuals – MDOF curve-fitting procedures – MDOF curve fitting in the Time Domain – Global or Multi-Curve fitting – Nonlinear systems.	7	12 (20)
Module 6 Derivation of Mathematical Models- Introduction – Modal Models – Display of Modal Model – Response Models – Spatial Models – Mobility Skeletons and System Models.	7	12 (20)

04 ME 7615 -Syllabus

Course No	Course Name	L-T-P	Credits	Year of Introduction			
04 ME 7615	Industrial Robotics and Expert Systems	3-0-0	3	2020			
Prerequisite: Ba	sic knowledge in Mechanics and E	lectronics					
Course Objective	es: The objectives of the course is/are	e					
1. To unders	1. To understand the basic kinematics of robotics						
2. To impart	knowledge about robotic drives, co	ontrol and p	programming	2			
3. To impart	an idea about artificial intelligence	e and exper	t systems				
Syllabus							
Robot anatomy -	- Work volume – Precision movem	ent – End	effectors – S	Sensors. Robot Kinematics,			
Controlling the l	Robot motion – Position and velo	ocity sensir	ng devices, '	Transducers and Sensors –			
Tactile sensor -	Proximity and range sensors - S	Sensing join	nt forces, R	obot work cell design and			
control, Methods	of Robot Programming						
Expected outcom	e: The student will be able to						
1. Do the dir	rect and reverse kinematics						
2. Select the	sensors, drivers and controllers						
3. Design th	e work cells for robots						
4. Do the pro	ogramming of robots						
Text Book							
1. K.S. Fu, R.C. (Gonzalez and C.S.G. Lee, "Robotic	s Control, S	Sensing, Vis	ion and Intelligence",			
McGraw Hill, 1987.rewal, B.S., Higher Engineering Mathematics, 40th edition, Khanna							
References:							
1. Yoram Koren," Robotics for Engineers' McGraw-Hill, 1987.							
2.Kozyrey, Yu. "Industrial Robots", MIR Publishers Moscow, 1985.							
3.Richard. D, K lafter, Thomas, A, Chmielewski, Michael Negin, "Robotics Engineering - An							
Integrated Approach", Prentice-Hall of India Pvt. Ltd., 1984.							
4. Deb, S.R." Robotics Technology and Flexible Automation", Tata Mc Graw-Hill, 1994.							
5. Mikell, P. Groover, Mitchell Weis, Roger, N. Nagel, Nicholas G. Odrey," Industrial Robotics							
Technology, Programming and Applications", McGraw-Hill, Int. 1986.							

6. Timothy Jordanides et al," Expert Systems and Robotics ", Springer – Verlag, New York, May 1991.

COURSE PLAN					
MODULES	Contact hours	Sem Exam Marks; %			
Module 1 Introduction: Definition need and scope of Industrial robots – Robot anatomy – Work volume –Precision movement – End effectors – Sensors	7	9 (15)			
Module 2 Robot Kinematics – Direct and inverse kinematics – Robot trajectories – Control of robot manipulators – Robot dynamics – Methods for orientation and location of objects	7	9 (15)			
FIRST INTERNAL TEST					
Module 3 Robot drives and control: Controlling the Robot motion – Position and velocity sensing devices – Design of drive systems – Hydraulic and Pneumatic drives – Linear and rotary actuators and control valves – Electro hydraulic servo valves, electric drives – Motors – Designing of end effectors – Vacuum, magnetic and air operated grippers.	7	9 (15)			
Module 4 Robot sensors: Transducers and Sensors – Tactile sensor – Proximity and range sensors – Sensing joint forces – Robotic vision system – Image Representation - Image Grabbing –Image processing and analysis – Edge Enhancement – Contrast Stretching – Band Rationing - Image segmentation – Pattern recognition – Training of vision system	7	9 (15)			
SECOND INTERNAL TEST					
Module 5 Robot work cell design and control – Safety in Robotics – Robot cell layouts –Multiple Robots and machine interference – Robot cycle time analysis. Industrial application of robots	7	12 (20)			
Module 6 Robot Programming, Artificial Intelligence and Expert systems Methods of Robot Programming – Characteristics of task level languages lead through programming methods – Motion interpolation. Artificial intelligence – Basics– Goals of artificial intelligence – AI techniques – problem representation in AI –Problem reduction and solution techniques - Application of AI and KBES in Robots	7	12 (20)			

04 ME 7691 - Syllabus

Course No	Course Name	L-T-P	Credits	Year of Introduction			
04 ME 7691	SEMINAR II	0-0-2	2	2020			
Prerequisite: Nil							

Course Objectives: The objectives of the course are

- 1. To improve written and oral presentation skills and to develop confidence in making public technical presentations
- 2. To introduce a new relevant topic and share it to the peer group

Each student shall prepare a seminar paper on any topic of interest related to the core/elective courses being undergone in the first semester of the M. Tech. programme. He/she shall get the paper approved by the Programme Coordinator/Faculty Members in the concerned area of specialization and shall present it in the class in the presence of Faculty in-charge of seminar class. Every student shall participate in the seminar. Grade will be awarded on the basis of the student's paper, presentation and his/her participation in the seminar.

Goals: This course is designed to improve written and oral presentation skills and to develop confidence in making public presentations, to provide feedback on the quality and appropriateness of the work experience, and to promote discussions on design problems or new developments or ethical and safety issues in the workplace.

Expected outcome: At the end of the course, the student will be able to

- 1. Identify new directions in Engineering Design domain related to the core/elective courses
- 2. Demonstrate oral presentation skills
- 3. Demonstrate public engagement skills
- 4. Prepare comprehensive report based on literature survey on a technical topic

04 ME 7693 – **Syllabus**

Course No	Course Name	L-T-P	Credits	Year of Introduction				
04 ME 7693 Project (Phase I) 0-0-12 6 2020								
Prerequisite: Nil								
Course Objectives: The objectives of the course is/are								
1. To identify a real-time mechanical design problem and prepare a mathematical model for the same.								

The thesis (Phase I) shall consist of research work done by the candidate or a comprehensive and critical review of any recent development in the subject of specialization or a detailed report of project work consisting of experimentation/numerical work, design and or development work that the candidate has executed.

In Phase I of the thesis it is expected that the student should decide a topic of thesis, which is useful in the field or practical life. It is expected that students should refer national and international journals, proceedings of national and international seminars. Emphasis should be given to the introduction to the topic, literature review, and scope of the proposed work along with some preliminary work/experimentation carried out on the thesis topic.

Student should submit Phase I thesis report in two copies covering the content discussed above and highlighting the features of work to be carried out in part I of the thesis. Student should follow standard practice of thesis writing. The candidate will deliver a talk on the topic and the assessment will be made on the basic of the term work and talks there on by a panel of internal examiners one of which will be the internal guide. These examiners should give suggestions in writing to the student to be incorporated in thesis work Phase II.

Expected outcome: At the end of the course,

- 1. Identify a real-time mechanical design problem and prepare a mathematical model for the same.
- 2. Communicate and report effectively project related activities and findings as a bound volume

SEMESTER IV

04 ME 7694 – **Syllabus**

Course No	Course Name	L-T-P	Credits	Year of Introduction			
04 ME 7694	Project (Phase II)	0-0-21	12	2020			
Prerequisite: Nil			I				
Course Objectives: '	The objectives of the course is/are						
1. To find out a	technical feasible solution for the	mathematic	cal model for	rmulated in the Phase-I of			
project							
Syllabus							
In the fourth semes	ster the student has continue the	sis work ar	nd present th	he report. At the end of			
successfully finishing the work he/she has to submit a detailed report and has to present for a viva-							
voce. The work carried out should lead to a publication in a National / International Journal or							
Conference. They should have submitted the paper before M. Tech. evaluation and specific weightage							
should be given to accepted papers in reputed journals or conferences.							

Expected outcome: At the end of the course students will be able to

- 1. Apply practical tools/techniques in order to solve a practical design problem
- 2. Communicate and report effectively project related activities and findings as a bound volume
- 3. Publish the work done related to the project in a National / International Conference or Journal